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Preface
This document is intended to serve as an introductory textbook for a postgraduate or advanced
undergraduate course on Bayesian econometrics or as a reference for the applied econometrician
who never got exposed to the Bayesian approach. Although Bayesian econometrics is increas-
ingly being used in applied research, programs of study in economics usually include courses
only in frequentist econometrics, even if time allows for more than a single course. Apart from
tradition, this bias towards the frequentist approach to statistical inference can be attributed to
the lack of specialized software for Bayesian econometrics. This is changing rapidly, with main-
stream econometric software packages incorporating Bayesian techniques and the emergence
of new software packages that make application of Bayesian methods considerably easier.

This textbook aims at covering the basics of Bayesian econometrics, focusing on the appli-
cation of the methods, rather than the techniques themselves (deriving full conditionals and
coding). It does so by relying heavily on BayES for estimating the models presented in it
and, as such, it can also be used as a gentle introduction to the software. BayES was chosen,
apart from the obvious reason that the author is also the developer of the software, because
of the nature of the software. BayES is designed from the beginning exclusively for Bayesian
econometrics and it provides an intuitive graphical interface that allows first-time users to run
models without having to spend hours reading the documentation. Additionally, it features
a compact matrix language, which can be used by advanced users to code samplers for their
own models, if these are not yet available in BayES. Equally importantly, it provides interfaces
to other statistical software packages, both Bayesian and frequentist, which allow estimation
of specialized models available in them.

Chapter 1 starts by defining the modern meaning of the term econometrics and proceeds
to present the fundamentals of Bayesian inference and techniques. This chapter is, by far, the
most challenging, as it deals with the meaning and interpretation of probability, a concept that
appears straightforward until one really starts thinking about it, as well as with the process of
using data to update prior beliefs. The chapter has very little to do with economics and can
be viewed as a crash course in Bayesian inference for readers who have never seen the concepts
and methods before. Simulation methods are also covered in this chapter, as it is hard to sep-
arate Bayesian estimation theory from modern estimation techniques. The extend of coverage
of inference methods may seem unconventional to readers who have been exposed to frequen-
tist econometrics, but one has to keep in mind that most readers of frequentist econometrics
textbooks usually have already had a course in frequentist statistics and hypothesis testing,
while this is rarely the case for Bayesian methods.

The following two chapters cover the basic models used in econometrics and which can be
estimated with the methods presented in the first chapter. These include the linear model and
systems of equations and the user will be referred back to them on multiple occasions. Chapter 4
discusses data augmentation, the method that enables Bayesian inference to deal with complex
models on which frequentist methods usually “choke”. Although initially discussed at a high
level of abstraction, two applications of data augmentation are also presented in this chapter,
as extensions to the linear model. This chapter is definitely recommended to all readers, as
it forms the basis for much of the material covered in the remainder of the textbook. From
this point onwards the reader could concentrate on the models of interest without any break
in continuity.

The textbook follows the development of BayES and, as such, it can be considered incom-
plete. As BayES’ coverage extends to include more models, this document will evolve as well.
Nevertheless, the material included in the current version covers the basics of Bayesian infer-
ence and the most popular econometric models for cross-sectional and panel data. Therefore,
it can already be used for a semester-long course on Bayesian econometrics or to provide the
fundamentals for an applied econometrician.

This textbook has already started being used by academics and applied researchers. Among
them, Prof John Burkett deserves a grateful acknowledgement for providing comments and
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suggestions, which have greatly improved exposition in many places.



Chapter 1

Econometrics and Bayesian Inference

1.1 Overview

This chapter starts by defining the modern use of the term econometrics and by briefly com-
paring the frequentist and Bayesian approaches to statistical inference. Its primary purpose,
however, is to introduce the reader to Bayesian concepts and methods, as well as to the al-
gorithms that revolutionized the way applied Bayesian research is conducted. Therefore, the
presentation abstracts from economic theory as much as possible and concentrates only on
statistical concepts. At places exposition may appear repetitive and this is because the fun-
damental concepts are initially presented in a way that allows the reader to form a complete
picture of the approach, before delving into the details. Ideas are fixed using very simple ex-
amples that have close to nothing to do with economics. Finally, Markov chain Monte Carlo
(MCMC) methods are presented in an algorithmic fashion and only some intuition is provided,
while the reader is directed to other textbooks and book chapters for formal definitions and
proofs.

1.2 Econometrics: Frequentist and Bayesian Approaches

The modern meaning of the term econometrics was coined by Frisch (1933) as the unification of
three aspects of quantitative economic analysis: (i) statistical, (ii) quantitative theoretical, and
(iii) mathematical. Although this definition appears to enjoy general acceptance, the statistical
aspect is undoubtedly stressed in the way econometrics is taught at the undergraduate level
and presented in modern econometric textbooks and this approach is followed in this textbook
as well. According to such an approach, mathematics is assumed to have been used at a
preliminary stage of the process of econometric analysis to express a theoretical model in a
form that is amenable to statistical analysis, while economic theory is used to derive refutable
hypotheses, which can then be confronted with the data. These steps involve elements which
are viewed as being too problem-specific to be covered in the main part of the text. Therefore,
with some notable exceptions, the presentation of statistical methods abstracts from specific
economic models, but economic theory is reintroduced in particular applications. On the other
hand, mathematics is integrated seamlessly into the statistical derivations.

In applied work econometrics uses data to accomplish three primary tasks: (i) to estimate
the parameters of statistical models suggested by economic theory, (ii) to evaluate the plau-
sibility of statements or compare alternative models/theories when these are confronted with
data, and (iii) to predict or forecast the values of quantities of interest. Almost always these

1



2 CHAPTER 1. ECONOMETRICS AND BAYESIAN INFERENCE

tasks are pursued in the order presented above, with the analysis in later steps being informed
by the results obtained in preceding steps. Notice that, again, the statistical aspect of econo-
metrics is emphasized, while the development of the theories to be tested or compared is not
explicitly stated as an additional task.

The two preceding paragraphs defined econometrics from a compositional and a func-
tional perspective, respectively. These definitions are generic enough to encompass both major
branches of modern econometrics, namely classical or frequentist and Bayesian econometrics.
However, the similarities between these two branches end as soon as the approach to statis-
tical inference is concerned. The differences stem from the way randomness in the data is
transformed into uncertainty with respect to the values of the parameters of an econometric
model (or other quantities of interest) and this simple discrepancy is enough to make the two
approaches largely incompatible.

Although both frequentist and Bayesian statistical methods are based on the axioms and
laws of probability, they take a different view on the fundamental concept of probability itself.
In the frequentist approach the probability of an event occurring is quantified by repeating a
random experiment multiple times and calculating the proportion of times the event actually
occurred. In the Bayesian approach, probability is used to express a state of knowledge or
belief about the likelihood of the event. On one hand, the Bayesian view on probability is
much more practical because it can be used in problems where no random experiment can
be conceived, which can be repeated multiple times. On the other hand, quantifying beliefs
introduces subjectivity to the analysis1 and this has spurred a great deal of criticism of the
Bayesian approach and equally many attempts from the Bayesian side to defend its methods.
This debate extends far beyond econometrics or statistics and well into the realm of philosophy
and, in particular, probabilistic logic.2 The main arguments used in defense of the Bayesian
approach and the possible ways of reducing the influence of subjective beliefs on the final results
are briefly reviewed at the end of the following section. The interested reader is directed to
Howie (2004) for a more in-depth discussion on the topic.

The different views on probability taken by the frequentist and the Bayesian approach lead
to slightly different meanings for the term “estimation”. In the frequentist approach observed
data are used to construct a confidence interval for a parameter or any other quantity of interest
and for a predetermined confidence level , say 95%. The confidence interval is such that, if the
entire sampling and estimation process were to be repeated multiple times, then in 95% of the
repetitions the constructed interval would contain the true value of the quantity of interest.
Notice that, even with a single dataset, the frequentist approach has to rely on a conceptual
repetition of the sampling and estimation process. On the other hand, the Bayesian approach
uses the data to update prior beliefs about the value of the quantity of interest and the end
result is usually a probability density function, which quantifies the uncertainty with respect
to the true parameter value, after having seen the data. Because the Bayesian approach takes
the data as given, interpretation of the results is much more intuitive. Furthermore, the entire
process of estimation, model comparison and prediction becomes straightforward and can be
very concisely presented because it relies only on the basic laws of probability.

Although conceptually straightforward, until the end of the previous century Bayesian
methods were only marginally used in applied econometric work. This is because the math-
ematics involved in an application of Bayesian methods to most modern econometric models
would make the approach either impractical or too restrictive. This has changed over the last
two decades for three primary reasons: (i) the development of efficient sampling methods that
allow very complex models to be considered, (ii) the increase in computing power of personal
computers or clusters of computers, which facilitates the application of these sampling algo-
rithms, and (iii) the incorporation of Bayesian techniques to standard econometrics/statistics
software or the emergence of new software designed to automate calculations, thus relieving
the researcher from tedious algebraic manipulations and the burden of coding the procedures

1This is not so much the case when the Bayesian view on probability is used to express the state of knowledge.
The subtle difference between expressing a “state of knowledge” and a “degree of belief” has led to a further
subdivision of the Bayesian view on probability to objective and subjective Bayesian probability.

2See Alder (2005a,b) for a very entertaining discussion on this issue.
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necessary to perform Bayesian inference.

1.3 Bayes’ Theorem and Bayesian Inference

Bayesian inference gets its name from Bayes’ theorem, a result in probability theory that is
used to update beliefs regarding the value of parameters or other random quantities using
evidence from the data. Bayes’ theorem follows from the formula of conditional probability
and holds irrespective of whether one takes the frequentist or the Bayesian view on probability.

To derive Bayes’ theorem let A and B be two events defined in relation to a random ex-
periment, with probabilities Prob(A) and Prob(B), respectively. The probability of both A

and B occurring in a repetition of the experiment is denoted by Prob(A, B). Assuming that
Prob(B) 6= 0, the probability of A occurring, given that B has occurred is:

Prob(A|B) = Prob(A, B)

Prob(B)
(1.1)

This conditional probability formula is easier to interpret after some rearrangement:

Prob(A, B) = Prob(A|B) · Prob(B) (1.2)

which, in words, says:

the probability of A and B occurring is equal to the probability of B occurring times

the probability of A occurring given that B has occurred

We could think of this formula as a way of calculating the joint probability of A and B by first
calculating the probability of B and then examining the probability of A, while treating B as
having already occurred. However, the time dimension introduced here, where we think of B
as occurring before A, is used only to give some intuitive interpretation of the formula. We
could reverse the roles of A and B on the right-hand side and write:

Prob(A, B) = Prob(B|A) · Prob(A) (1.3)

Bayes’ theorem follows by equating the right-hand sides of (1.2) and (1.3) and rearranging:

Prob(A|B) = Prob(B|A) · Prob(A)
Prob(B)

(1.4)

Bayes’ theorem reverses the roles of the two events in conditioning and, by doing so, allows
calculation of Prob(A|B) using knowledge of Prob(B|A). More precisely and in the context of
Bayesian inference, knowledge of Prob(B|A) and Prob(B) allows updating the belief of A occur-
ring after obtaining evidence of B having occurred. Example 1.1 provides a simple application
of Bayes’ theorem, which illustrates the use of the theorem to update beliefs or knowledge
about the likelihood of an event, when new information is obtained.

� Example 1.1 Bayes’ Theorem
Increased air traffic near a small regional airport during high season causes delays in landing. In
response to passengers’ and airlines’ concerns and complaints, the airport’s management released the
following information:

� the probability of an airplane landing at the airport with more than 10 minutes delay is 30%

� 60% of delayed landings are due to delayed departure from the airport of origin

� of the airplanes that land at the small airport, 20% leave their airport of origin with a delay

Suppose that you are picking a friend from the airport who just called you to tell you that her airplane
will depart with a delay. What is the probability that the airplane your friend is in will land with more
than 10 minutes delay?

To transform the information provided by the airport’s management into probability statements
define the events:
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DL: an airplane lands at the airport with a delay of more than 10 minutes

DD: an airplane leaves the airport of origin with a delay

Using these definitions, the three bits of information above become:

� Prob(DL) = 0.3

� Prob(DD|DL) = 0.6

� Prob(DD) = 0.2

Prior to receiving the information that your friend’s airplane departed with a delay, the probability
that it would land with a delay of more than 10 minutes is simply Prob(DL) = 0.3. Given the additional
information of delayed departure, the probability of delayed landing becomes:

Prob(DL|DD) =
Prob(DD|DL) · Prob(DL)

Prob(DD)
=

0.6 · 0.3

0.2
= 0.9

Bayes’ theorem was presented here using events, but it can be shown that it also holds
when considering random variables. Let X and Y be two random variables with probability
density functions p(x) and p(y), respectively. Using these probability density functions Bayes’
theorem can be expressed as:

p(x|y) = p(y|x) · p(x)
p(y)

(1.5)

In Bayesian inference x plays the role of the parameters of a stochastic model and y the
role of the data. Using notation that will persist throughout this textbook, by collecting all
parameters in a vector θ and the data in a vector y and by renaming some of the densities,
the theorem becomes:

π (θ|y) = p(y|θ) · p(θ)
m (y)

(1.6)

Of course, if the model involves more than a single parameter and more than a single data
point is used then all densities in the last expression will be multivariate. The last expression
involves four densities:

1. π (θ|y) is the posterior density and it is the primary quantity of interest in Bayesian
inference. It expresses our knowledge about the values of the model’s parameters after
we see the data.

2. p(y|θ) is the likelihood function and it is the main part of the model specification. The
likelihood function is the density of the data given the values of the model’s parameters
and it depends on the assumptions imposed by the researcher on the data-generating
process .

3. p(θ) is the prior density of the model’s parameters and it is an additional element of the
model specification. The prior density expresses knowledge or beliefs about the values of
the parameters before we look at the data.

4. m (y) is the marginal likelihood and, as its name suggests, it is the density of the data
marginally with respect to the parameters. Its form depends on the specification of model
(likelihood function and prior density) and can be obtained by integrating θ from the
numerator of (1.6). In most applications it will be difficult to perform this integration
analytically, but, given that the primary quantity of interest is the posterior density of
the parameters and that m (y) does not involve θ, the denominator in the last expression
can be viewed as a constant of proportionality for π (θ|y). This constant is irrelevant for
purposes of estimation and can be ignored at this stage. In practice, therefore, it is most
often ommited from (1.6) and Bayes’ theorem is expressed as:

π (θ|y) ∝ p(y|θ) · p(θ) (1.7)

with the symbol “∝” taken to mean “proportional to”.

The last expression in words says:
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the posterior density of the model’s parameters is proportional to the likelihood

times the prior density

The right-hand side contains the complete specification of the model. It is stressed that a model
specification in Bayesian inference consists of both the likelihood function and the prior density
of the parameters. Because of the fundamental role that the three densities that appear in (1.7)
play in Bayesian inference, each one is examined in detail in the following three subsections.
To fix ideas, the discussion is augmented with a simple but very extensive example that runs
throughout this section.

1.3.1 The Likelihood Function

The likelihood function constitutes part of the specification of a stochastic model and it conveys
the assumptions on the process that generates the data. It is expressed as a density of the
form p(y|θ), where y are the data and θ the model’s parameters. The meaning of θ is
straightforward, but the meaning of y deserves some discussion. With a given dataset at
hand, y will be populated by numerical values. In stochastic models these values are viewed as
realizations of random variables; the realizations are what we observe (fixed) but the underlying
data-generating process is what we are interested in. This is because statistical inference is not
concerned with simply describing the dataset at hand, but its primary objective is to make
statements about the values of θ in the population. And the only way this can be achieved
is by considering the process that generates the data in the population. Of course, the data
are used in the process of statistical inference to provide information about the values of the
parameters.

In words, and given the foregoing discussion, the likelihood function is the probability
density function of a potential dataset, evaluated at the observed data points, given the values
of the parameters. The values of the parameters are not known yet and conditioning on them
may appear bizarre. However, Bayes’ theorem can be used to reverse the roles of y and θ in
conditioning, such that we get the density of the parameters given the observed data.

Because the likelihood function expresses the assumptions on the process that generates
data, different models will have different likelihood functions, simply because they concern
different phenomena. Therefore, specification of the likelihood is not possible at the level of
generality considered here. Nevertheless, this specification will be the major part of the chap-
ters that follow, which deal with specific statistical and economic models. A simple example
is provided here only to fix ideas.

� Example 1.2 Customer Arrival Rate
A sandwich store which is located at the commercial district of a large city becomes very busy during
rush hour, when employees of nearby businesses have their lunch break. The manager knows that the
store can serve 4 customers per minute but she needs an estimate of the rate at which customers are
added to the queue (arrival rate). For that purpose, she stood at the door of the sandwich store and
recorded the time that elapsed between each successive customer arrival, until 100 customers entered
the store.

Let yi be the time that elapses between the ith and the following arrival and let y be a vector
that contains the observed data. Therefore, y is an N × 1 vector, where N = 100 (the number of
observations).

We now need to specify a model for the process that generated these data. By far the most popular
distribution used in this type of queueing problems is the Exponential. The Exponential distribution’s
probability density function is p (x) = λe−λx, where λ is the rate parameter. In our application λ is
the primary quantity of interest, as it measures the expected number of customers that enter the store,
per minute. One additional assumption that we will make here is that the time elapsing between two
successive arrivals is independent of the time elapsing between preceding or following arrivals. These
assumptions lead to a model where each observed yi is a draw from an exponential distribution with
rate λ: yi ∼ Exp (λ). The likelihood function is the density of all data points and, because of the
independence assumption, this density can be expressed as:

p(y|λ) =

N
∏

i=1

λe
−λyi = λ

N
e
−λ

N
∑

i=1
yi
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1.3.2 The Prior Density

The prior density constitutes the second part of the specification of a model in Bayesian
inference and it conveys prior beliefs or knowledge about the values of the parameters of a
model. These beliefs are prior in the sense that they are formed without using information
contained in the dataset at hand. Like the likelihood function, the prior density takes the
form of a probability density function, expressed in general terms as p(θ). In practice this
density will belong to a conveniently chosen parametric family and it will be augmented by
this family’s own parameters, called hyperparameters .3

Both the family of the prior density and the values of the hyperparameters are chosen by
the researcher and, as any form of model specification, they may have a considerable impact
on the conclusions drawn from the analysis. Most importantly, because these choices are not
updated in the process of estimation or inference, they have the potential of introducing a
degree of subjectivity into the analysis. Therefore, a lot of effort has gone into deriving priors
that do not impose too harsh restrictions on the data or that have minimal impact on the
results.

Priors can be classified into the following three broad categories:

� subjective priors : When using subjective priors, the researcher can be thought of as
expressing his/her own beliefs about the values of the parameters.

In an extreme scenario, a researcher with very strong beliefs would pick a prior density
that would have a large spike around a certain parameter value and be zero elsewhere.
Such a prior would dominate the information contained in the data and very little can
be learned from them. The conclusions obtained using such a prior will still be in line
with the researcher’s strong views, but probably of limited usefulness to anyone else, at
least as far as the statistical analysis is concerned.

On the other hand, a prior density that is chosen such that it is positive over a wide
range of possible values of the parameters and contains no spikes, can be used to expresses
rather “vague” beliefs. Given enough information in the data, such a prior is likely to have
minimal impact on the results and conclusions. In this, case the prior is dominated by the
likelihood, especially if the dataset at hand contains many observations. Furthermore, the
impact of alternative specifications of the prior density on the results can be examined by
repeating the analysis multiple times and with different priors, something that is known
as sensitivity analysis .

There is a continuum of approaches that can be taken and lie between the extremes of
refusing to learn from the data and taking great care in devising “vague” priors. Berger
(1985) presents some practical ways of devising subjective priors that can be used to
express beliefs.

� objective priors : In this case the priors are formed using knowledge available either
from theory or from previous statistical analyses (of other datasets than the one at
hand). Objective priors contain information about the density of the parameters, but
this information can be justified.

As an example of using economic theory to form priors, consider an aggregate production
function with capital and labor as the two inputs and value added as the measure of
output. Most economic models suggest that, at the aggregate level, the production
function exhibits constant returns to scale and the specification of the prior could take
this into account. The prior could be imposing the constant-returns-to-scale assumption
very strongly, by allowing the values of the parameters to deviate only marginally from
it, or rather “vaguely”.

When results from previous analyses are available, these can also be taken into account
when forming priors. Continuing with the previous example, if the production function

3Throughout this textbook Greek letters are used to denote parameters and Latin for hyperparameters.



1.3. BAYES’ THEOREM AND BAYESIAN INFERENCE 7

takes the form a Cobb-Douglas then previous analyses have shown that the output elas-
ticity with respect to labor is close to 2

3 and that of capital close to 1
3 . On top of that,

from the results of previous analyses the researcher could obtain approximations to the
entire distribution of the production function’s parameters and incorporate them in the
prior density. The task of Bayesian inference in this context could be, not to disregard
previous knowledge, but to update it using new data.

� noninformative priors : These priors are designed with the objective of having minimal
impact on the results in general situations. Other terms used for them are reference,
vague, flat or diffuse priors.

There have been multiple attempts in the literature to derive a general way of construct-
ing noninformative priors and the most well known is Jeffreys’ approach. Jeffreys’ priors
satisfy the invariance principal , according to which a prior density for a parameter θ
should convey the same amount of information as for a monotonic transformation of θ,
when the model is re-parameterized. Although invariance could be a desirable property,
it is not clear in what sense such a prior is noninformative. Furthermore, generaliza-
tion to multiple parameters of Jeffreys’ priors is rather controversial. Most importantly,
Jeffreys’ priors are almost always improper (they do not integrate to unity as a density
function should) and this creates problems in some complex models and hamper model
comparison via Bayes factors .

Another approach for constructing noninformative priors starts by formally defining what
is meant by saying that the prior should have minimal impact on the results. The
approach uses concepts from information theory to find the prior that can be “maximally
dominated by the data” and the term reference prior is almost exclusively associated with
it. Like Jeffreys’ priors, reference priors are almost always improper and in problems with
a single parameter they take the same form as Jeffreys’ priors. A review of the approach
by the authors that contributed the most in its development can be found in Berger et
al. (2009).

As it can be seen from the discussion above, the three categories of approaches used for
deriving prior densities do not have clear boundaries. For one thing, the terms “vague” and
“diffuse” can be used in the contexts of subjective, objective and noninformative priors. The
current tendency is to move away from the use of the term “noninformative prior”, as it is
largely recognized that it is nearly impossible to construct priors entirely free of prior beliefs.
Taking the argument to the extreme, expressing complete ignorance about the value of a
parameter still conveys some amount of information. The interested reader is directed to
chapter 3 from Berger (1985), chapter 1 from Lancaster (2004), chapter 2 from Gelman et al.
(2013), and chapter 4 from Greenberg (2013) for discussions that take different viewpoints on
the subject.

The subjective approach to forming priors will be used in this textbook, but always with
special care such that no priors are chosen which would restrict what we can learn from the
data. When information from economic theory or previous studies is available, this will be
incorporated in the priors, thus moving towards the objective approach. Avoiding Jeffreys’
priors is done both for generality and for practical purposes. In most cases Jeffreys’ priors
can be obtained by letting the parameters of a prior density (the hyperparameters) to go
towards specific values, such as 0 or ∞. In practice, relatively flat priors (coverage of the range
of possible values of the parameters and without spikes) are sufficient to guarantee minimal
impact on the results. Finally, because model comparison will be performed using Bayes
factors we will need proper priors for the models’ parameters.

Returning to the practical problem of defining a prior, when using Jeffreys’ or reference
priors the respective procedures will suggest a single formula and nothing else needs to be done
at this stage. In the subjective and objective approaches the researcher has or gets to pick:
(i) a family of density functions for the prior, and (ii) values for the hyperparameters of this
density. Picking a parametric family is usually based on grounds of straightforward reasoning
and convenience. For parameters which must be restricted to be positive, such as variance
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or scale parameters, a density function should be used that is defined only for positive values
of its argument. On the other hand, densities with support on the real line should be used
for location parameters, which could be either positive or negative. In terms of convenience,
analysis is greatly simplified if the prior is chosen such that, when combined with the likelihood
function, it results in a posterior that belongs to a known parametric family of distributions.
There is no guaranty that such a prior will exist for every parameter in a model, but when it
does the posterior usually belongs to the same parametric family as the prior. A prior density
for a parameter vector, θ, in a model is called conjugate if it leads to a posterior for θ that
belongs to the same parametric family as the prior.

� Example 1.2 Customer Arrival Rate (Continued)
The sandwich-store example presents a model for the process that generates inter-arrival times, where
each data point is assumed to be a draw from an Exponential distribution with rate λ. The rate
parameter of an Exponential distribution is always positive and we can consider a Gamma distribution
with shape parameter a and rate parameter b as a prior for it:

p(λ) =
ba

Γ (a)
λ
a−1

e
−bλ

a and b are the hyperparameters and we need to pick values for them to complete the specification of
the prior.

The expected value of a Gamma-distributed random variable is a
b
and the variance a

b2
. Suppose

that, before we see the data, we expect that, on average, about four customers enter the store per
minute. This implies that λ should be close to four and we can express this in the prior by picking
values for a and b such that a = 4b. Of course, if we want to learn anything from the data we should
allow λ to deviate from this expectation, if the data suggest so. We can increase the variance of λ in
the prior by picking smaller values for both a and b.

The following table presents possible values for the hyperparameters and their implications for the
expected value and variance of λ in the prior. The resulting prior densities are plotted in the following
figure. Notice that as the values of a and b become smaller the prior becomes more vague.
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Hyperparameters E (λ) V (λ)

— a = 8, b = 2 4 2
— a = 4, b = 1 4 4
— a = 2, b = 0.5 4 8
— a = 1, b = 0.25 4 16

The figure above can be recreated in BayES by placing the code contained in the following box in the
Script Editor window and and hitting Ctrl+R.✞ ☎

// create a range of values from 0.01 to 12.0, on which the pdf of the

// Gamma distribution will be evaluated

x = range (0.01 , 12 , 0.05) ;

// calculate the pdf of the Gamma distribution at each point x and for

// varying values of the hyperparameters

y1 = gampdf(x, 8, 2);

y2 = gampdf(x, 4, 1);

y3 = gampdf(x, 2, 0.5);

y4 = gampdf(x, 1, 0.25);

// plot the four different pdfs against x

plot ([ y1 , y2, y3, y4 ], x,

"title" = "Prior probability density functions for \lambda",

"xlabel" = "\lambda", "ylabel" = "density", "grid" = "on");
✝ ✆
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1.3.3 The Posterior Density

The posterior density is the end product of a Bayesian inference exercise, at least as far as
parameter estimation is concerned. This density takes the general form π (θ|y) and it expresses
our knowledge about θ after having seen the data. The posterior density is obtained from an
application of Bayes’ theorem:

π (θ|y) = p(y|θ) · p(θ)
m (y)

∝ p(y|θ) · p(θ) (1.8)

which makes apparent that it depends on the modeling assumptions that are incorporated in
both the likelihood and the prior.

When the model involves a single parameter, the posterior density is this parameter’s
probability density function. When there are more parameters in the model, the posterior is
the joint density of all parameters. Mathematically, the posterior takes the form of a formula
which, in most cases, provides little intuition about the values of the parameter(s). The
task now becomes one of extracting the information contained in π (θ|y) and presenting it
in a way that is easy to comprehend. An obvious way to proceed is to plot a graph of each
parameter’s posterior density, marginally with respect to the rest. However, this approach
becomes impractical if the model has more than a few parameters. Therefore, it is customary
in applied work to present in a table the first two moments of the marginal posterior density
of each parameter in θ. For example, if θ consists of two parameters, θ1 and θ2, the results
are presented in a table of the following form:

Parameter Mean St.dev.

θ1 E (θ1|y)
√

V (θ1|y)
θ2 E (θ2|y)

√

V (θ2|y)

where:

E (θ1|y) =
∫

Θ1

θ1 · π (θ1|y) dθ1

V (θ1|y) =
∫

Θ1

(

θ1 − E (θ1|y)
)2

· π (θ1|y) dθ1
(1.9)

and π (θ1|y) is the marginal posterior density of θ1:

π (θ1|y) =
∫

Θ2

π (θ1, θ2|y) dθ2 (1.10)

Similar calculations should be performed for θ2.
If the model contains more than two parameters, calculating the moments involves multidi-

mensional integration. However, these integrals are rarely evaluated analytically in practice. If
π (θ|y) belongs to a known family of densities, most frequently the marginal moments will be
available in closed form and the only thing one has to do is to evaluate the formulas using the
dataset at hand. If π (θ|y) does not belong to a known family or the marginal densities are not
available analytically, the moments presented above can be approximated using simulation.4

The posterior density function can also be used to make probability statements about the
values of the parameters. For example, the probability of a parameter θ1 being within an
interval [c1, c2] can be expressed as:

Prob(c1 ≤ θ1 ≤ c2) =

∫ c2

c1

π (θ1|y) dθ1 (1.11)

4Simulation methods are covered later in this chapter, but it is worth mentioning at this point that the
way Bayesian inference is conducted was revolutionized by simulation methods because they provide a way of
approximating these integrals.
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The integral above can be evaluated analytically if the marginal cumulative density function
of θ1 is known in closed form or, as with the previous integrals, approximated using simulation
methods.

Finally, it has become common practice in applied research to present, along with the
moments of a parameter, its 90% or 95% credible interval . The credible interval is constructed
using a simplified version of (1.11) by picking the numbers c1 and c2 such that the left-hand
side probability is equal to 0.9 or 0.95, respectively. For example, a 90% credible interval for
θ1 can be obtained by setting c1 equal to the value that satisfies Prob(θ1 ≤ c1) = 0.05 and c2
to the value that satisfies Prob(θ1 ≤ c2) = 0.95. The credible interval [c1, c2] constructed in
this way presents another way of quantifying the uncertainty regarding the value of θ1, as it
states that the probability of θ1 being between c1 and c2 is 90%. In this example the credible
interval was constructed such that equal probability mass was discarded from the lower and
upper tails of the posterior distribution. There exist other ways to construct credible intervals
and a popular alternative is to construct the shortest possible credible interval . However, when
the posterior density cannot be obtained in closed form, construction of the shortest possible
interval may become very challenging.

Because credible intervals provide a way of performing interval estimation, they can be
viewed as the Bayesian counterpart to frequentist confidence intervals. The differences between
the two concepts, however, become apparent once the meaning of a confidence interval is
examined in detail. A 90% confidence interval for θ1 is to be interpreted in the following way:
if one were able to obtain many datasets generated from the assumed process and repeat the
process of estimation and construction of the confidence interval on all of these datasets, then
in 90% of the repetitions the constructed confidence interval will contain the true parameter
value. On the other hand, the credible interval has a much more intuitive interpretation: θ1
lies within the 90% credible interval with probability 90%.

� Example 1.2 Customer Arrival Rate (Continued)
The two previous parts of the sandwich store example present a model specification with likelihood
function and prior density:

p(y|λ) = λ
N
e
−λ

N
∑

i=1
yi

and p(λ) =
ba

Γ (a)
λ
a−1

e
−bλ

respectively. Using Bayes’ theorem, the posterior density of λ from this model is:

π (λ|y) ∝ p(y|λ) · p(λ)

= λ
N
e
−λ

N
∑

i=1
yi

×
ba

Γ (a)
λ
a−1

e
−bλ

∝ λ
(N+a)−1

e
−λ

(

N
∑

i=1
yi+b

)

where ba

Γ(a)
is dropped from the final expression and, because it does not involve λ, becomes part of

the constant of proportionality.
The resulting posterior looks like a Gamma probability density function with shape parameter

ã = N + a and rate parameter b̃ =
∑N

i=1 yi + b. All that is missing is a constant of proportionality.
This constant can be obtained using the fact that proper density functions integrate to unity:

∫ ∞

0

π (λ|y) dλ = 1 ⇒

∫ ∞

0

c · λã−1
e
−λb̃ dλ = 1

The constant, c, that satisfies the last equation is precisely the one that would make the posterior

density equal (not proportional) to a Gamma density: c = b̃ã

Γ(ã)
. Therefore:

λ|y ∼ Gamma
(

ã, b̃
)

From the properties of the Gamma distribution we get E (λ|y) = ã

b̃
and V (λ|y) = ã

b̃2
. Furthermore,

because we have a single parameter in the model, we can plot the entire posterior probability density
function.
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The only thing left to do is to feed the formulas with the data. The file WaitingTimes.csv

contains values for 100 draws from an Exponential distribution. Using the formulas derived here and
the values of the hyperparameters defined in the second part of the example, we obtain the results in
the following table.

Hyperparameters E (λ|y) V (λ|y)

— a = 8, b = 2 4.4048 0.1797
— a = 4, b = 1 4.4220 0.1880
— a = 2, b = 0.5 4.4312 0.1925
— a = 1, b = 0.25 4.4359 0.1948

The posterior densities of λ using each of the four pairs of values for the hyperparameters are presented
in the following figure.
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Notice that as the prior becomes more vague (a and b go towards zero), the posterior expectation
moves away from the prior expected value of a

b
= 4, but also that the posterior variance increases.

This is an indication that the data tend to support a value for E (λ|y) greater than 4 and, as the
prior becomes more vague, they are allowed to express this more freely. Nevertheless, differences in
the posterior are small and quite different values for the hyperparameters produce similar posterior
densities. Even with 100 observations, information from the data can dominate information from the
prior.

We note in passing that, in a frequentist setting, both the maximum-likelihood and the method
of moments techniques would produce a point estimate of λ as:

λ̂MLE =
N

N
∑

i=1

yi

The only difference between the formulas for λ̂MLE and E (λ|y) from the Bayesian approach is that in
the latter, the values of the hyperparameters are added to the numerator and denominator, respectively.
As the prior becomes more vague, E (λ|y) converges to the frequentist point estimate. Using the same
dataset, the maximum-likelihood estimate of λ is 4.4407.

The results and figure presented above can be generated in BayES using the code contained in the
following box.

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/WaitingTimes.csv");

// get the number of observations in the dataset

N = rows(Data);

// calculate the sum of the values in y

sumy = sum(Data.y);

// define values for the hyperparameters

a = [ 8; 4; 2; 1]; // 4x1 vector

b = [ 2; 1; 0.5; 0.25]; // 4x1 vector

http://www.bayeconsoft.com/datasets/WaitingTimes.csv
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// calculate the posterior parameters for each pair of hyperparameters

a_tilde = N + a;

b_tilde = sumy + b;

// calculate the posterior moments for each set of hyperparameters

E_lambda = a_tilde./b_tilde;

V_lambda = a_tilde./(b_tilde.^2);

print( [E_lambda, V_lambda]);

// calculate the maximum-likelihood estimate of lambda

lambda_MLE = N/sumy;

print(lambda_MLE);

// plot the posterior densities

x = range(3, 6, 0.02) ;

y1 = gampdf(x, a_tilde(1), b_tilde(1));

y2 = gampdf(x, a_tilde(2), b_tilde(2));

y3 = gampdf(x, a_tilde(3), b_tilde(3));

y4 = gampdf(x, a_tilde(4), b_tilde(4));

plot([ y1 , y2, y3, y4 ], x,

"title" = "Posterior probability density functions for \lambda",

"xlabel" = "\lambda", "ylabel" = "density", "grid" = "on");

✌✝ ✆

1.3.4 Model Comparison and the Marginal Likelihood

Estimating the parameters of a stochastic model, or to put it better, updating our knowledge
about the values of the parameters using evidence from the data, accomplishes the first task
of econometrics. After this step is completed, the analysis can move to comparing alternative
models in terms of their ability to accommodate the data. The Bayesian approach provides
a very intuitive device for model comparison. Although multiple models can be compared, to
keep exposition simple, the presentation is restricted here to two models, with generalizations
provided at the end of this subsection.

Suppose that the researcher has two competing theories, which suggest alternative models:

Model 0: p0 (yi|θ0, •) , p0 (θ0)
Model 1: p1 (yi|θ1, •) , p1 (θ1)

(1.12)

In the context of statistical inference, the two models can be expressed as different data-
generating processes, captured by the density of a potential observation, augmented with the
prior density for the parameters. Labels 0 and 1 are used here to distinguish the elements
of these processes. The general formulation above allows for differences between the data-
generating processes in the form of the likelihood function, the number of parameters or the
set of conditioning variables, denoted by “•”, as well as differences in the prior densities.
Notice, however, that both processes describe the generation of the same variable, yi.

In accordance with the labels used above, define M as a discrete random variable which can
assume two values, 0 or 1, and whose value indicates which of the two models better describes
the phenomenon under study.5 Next, associate prior probabilities with the events M =0 and
M=1. These probabilities express prior beliefs or knowledge about the relative plausibility of
the two models. As with parameter estimation, the prior model probabilities do not contain
information from the dataset at hand and the data are only used to update these priors. By

5A convenient mechanism to conceptualize the problem is to think of it as if one of the two models is the
“true model” that generates the data, but we are uncertain as to whether this is Model 0 or Model 1. The use
of the term “true model”, however, is controversial and it has to be recognized that this mechanism involves a
great abstraction from reality. According to George Box “all models are wrong, but some are useful”. Even if
one disagrees with this statement, it can be argued that, by entertaining only two models, it is highly unlikely
that we have included the “true model” in the analysis.
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applying Bayes’ theorem to Model 0 we obtain:

Prob(M=0|y) = m (y|M=0) · Prob(M=0)

m (y)
(1.13)

where Prob(M=0) and Prob(M=0|y) are, respectively, the prior and posterior model proba-
bilities for Model 0. m (y|M=0) is the density of the data given the assumptions incorporated
in Model 0, but marginally with respect to the parameters that appear in Model 0. The as-
sumptions made by Model 0 involve both the likelihood function and the prior and this density
can be expressed as:

m (y|M =0) =

∫

Θ0

p0 (y|θ0, •) · p0 (θ0) dθ0 (1.14)

It becomes apparent from this discussion that m (y|M =0) is precisely the marginal likelihood
function that appears in the denominator of Bayes’ theorem and, when estimating the model’s
parameters, it was treated as a normalizing constant and ignored. The only difference is that
now we explicitly recognize that there are alternative models that could have generated the
data and these models result in different marginal likelihood functions.

Finally, m (y) in (1.13) is the density of the data marginally with respect to both parameters
and modeling assumptions. Because there is no conditioning information at all associated with
m (y), very little can be said about about its form. A convenient way to avoid having to
calculate this normalizing constant is to apply Bayes’ theorem to Model 1 to obtain:

Prob(M=1|y) = m (y|M=1) · Prob(M=1)

m (y)
(1.15)

and then divide (1.13) by (1.15). This process gives the posterior odds ratio between Model 0
and Model 1:

Prob(M=0|y)
Prob(M=1|y) =

m (y|M=0)

m (y|M=1)
· Prob(M=0)

Prob(M=1)
(1.16)

The posterior odds ratio is equal to the prior odds ratio times the ratio of marginal likelihoods
from the two models. The latter is known as the Bayes factor . The posterior odds ratio
indicates the relative plausibility of the two models after we see the data. The information
contained in this ratio is usually presented by normalizing the posterior model probabilities
such that they sum to unity. That is, once a value, say c, is obtained for the posterior odds
ratio, one may solve the system of equations:

Prob(M=0|y) = c · Prob(M=1|y)
Prob(M=0|y) + Prob(M=1|y) = 1

}

(1.17)

for the posterior model probabilities. Keep in mind, however, that this is just a normalization
used to facilitate interpretation and claims involving only one of the two models being the
“true model” should, optimally, be avoided (see also footnote 5).

Generalization of the procedure described above for model comparison to the case of J > 2
models is straightforward. The procedure consists of the following steps:

1. estimating all J models and calculating the values of the respective marginal likelihoods

2. assigning prior model probabilities to the J models

3. obtaining J − 1 posterior odds ratios using (1.16)

4. solving the system of equations consisting of the J − 1 posterior odds ratios and the

equation
J
∑

j=1

Prob(M=j|y) = 1

The most challenging step in this procedure is estimating each model and, especially, calculat-
ing the value of the marginal likelihood. As it can be seen from (1.14), calculating m (y|M =j)
involves an integral, which will rarely have an analytical solution. Approximations to this inte-
gral can be obtained by various methods, but we will not go further into the details here. The
interested reader is directed to Gelfand & Dey (1994), Chib (1995), Chib & Jeliazkov (2001)
and Lewis & Raftery (1997) for some popular approaches.
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1.3.5 Prediction and Forecasting

The third task of econometrics is to make predictions about the values of the variables being
modeled. These predictions make use of information contained in the observed data and
depend on the model specification. To fix ideas, suppose that the phenomenon being studied
involves modeling the data-generating process of a single variable, y. As before, let y be a
vector containing the observed values of this variable (realizations from the data-generating
process). Now, define y∗ as a vector of random variables, each one of them associated with the
value of y, either in different repetitions of the data-generating process or at different points in
time. As with parameter estimation, prediction involves expressing the uncertainty about y∗,
using information from the data. This uncertainty is quantified using the posterior predictive
density, which can be expressed as:

p(y∗|y) =
∫

Θ

p(y∗, θ|y) dθ =

∫

Θ

p(y∗|θ,y) · π (θ|y) dθ (1.18)

Notice that the posterior predictive density is the probability density function of y∗ conditional
only on the observed data. This density is obtained above, in two steps: first by marginalizing
p(y∗, θ|y) with respect to θ and then by conditioning on θ inside the integral. π (θ|y) in the
second step is the posterior density of the parameters, obtained by the application of Bayes’
theorem on the original problem of parameter estimation. In all but the simplest models,
the last integral will be impossible to evaluate analytically. However, once again, simulation
methods can be used for approximating it.

In many cases independence assumptions made on the data-generating process will allow
simplifying p(y∗|θ,y) to p(y∗|θ). In such cases, all information contained in the observed data
is transmitted to the parameters and y contains no additional information on y∗. Especially
in time-series contexts, however, this simplification will not be possible due to the dependence
of current values of y on its past values and one needs to work with the general version of the
posterior predictive density.

As it was the case with the parameters’ posterior density, the posterior predictive density
may not be the best device to communicate uncertainty with respect to the values of y∗.
Therefore, one additional step is taken in the context of prediction/forecasting, that of sum-
marizing the information contained in the posterior predictive density. This is usually done
by presenting the moments of y∗ (expected value, variance, etc.) along with the correspond-
ing credible intervals. Calculation of the moments or credible intervals involves additional
integration, which is most often performed by simulation.

� Example 1.2 Customer Arrival Rate (Continued)
In the sandwich-store example we assumed that each inter-arrival time, yi is a draw from an Exponential
distribution with rate λ. Using a Gamma prior we expressed the posterior density of λ as a Gamma
density with shape parameter ã = N + a and rate parameter b̃ =

∑N
i=1 yi + b, where a and b are the

hyperparameters.
Suppose now that a customer just entered the sandwich store and we want to predict how much

time will elapse until the next customer enters. Let y∗ be the next inter-arrival time. The posterior
predictive density is:

p(y∗|y) =

∫ ∞

0

p(y∗|λ,y) · π (λ|y) dλ =

∫ ∞

0

p(y∗|λ) · π (λ|y) dλ

where p(y∗|λ,y) simplifies to p(y∗|λ), because, due to having assumed that each yi ∼ Exp (λ), the
value of y∗ does not depend on previous inter-arrival times once we condition on the value of λ.
Plugging the formulas for p(y∗|λ) and π (λ|y) in the last expression leads to:

p(y∗|y) =

∫ ∞

0

λe
−λy∗ ·

b̃ã

Γ (ã)
λ
ã−1

e
−λb̃ dλ =

b̃ã

Γ (ã)

∫ ∞

0

λ
ã
e
−λ(b̃+y∗) dλ

Finally, by evaluating the last integral, we obtain an expression which can be used to derive, for
example, the expected value of y∗ or the probability of y∗ being within a certain interval:

p(y∗|y) = ã · b̃ã ·
(

b̃+ y∗

)−ã−1
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1.3.6 Discussion

Both the Bayesian and the frequentist approaches to statistical inference can accomplish the
three primary tasks of econometrics: parameter estimation, model comparison and prediction
or forecasting. In the Bayesian approach uncertainty with respect to the values of the quantities
of interest (parameters, forecasts, etc.) is considered from the outset by expressing prior beliefs
or knowledge about the values of the parameters. These beliefs are then updated using evidence
from the data and this process provides a natural way of reducing prior uncertainty. On the
contrary, uncertainty with respect to the value of the quantities of interest in the frequentist
approach is introduced using the conceptual device of repeated sampling. This device avoids
introducing subjectivity into the analysis, at least at this stage, but makes interpretation of
final results considerably more cumbersome.

Naturally, the Bayesian approach has been criticized for its need to express prior beliefs,
because this introduces subjectivity into the analysis. This critique, however, loses much of
its credibility once we consider what constitutes a model in both approaches. A model in
Bayesian inference consists of the specification of a data-generating process, which leads to the
likelihood function, and the specification of the prior density. In the frequentist approach only
specification of the likelihood is needed. However, assumptions incorporated in the likelihood
function can have a tremendous impact on the conclusions drawn from the analysis. That is,
the frequentist approach is, obviously, not immune to misspecification. Of course, removing a
component of a model that can cause problems reduces the risk of misspecification, but one
should avoid taking an extreme stance on the issue: subjectivity can enter the analysis in many
more ways than through the prior density.

The response from proponents of the Bayesian approach to this critique has been to con-
struct generic ways of obtaining priors which have as small an impact on the final results as
possible. Whether one chooses to use the proposed priors remains a matter of preference or
convenience. In most models, when prior beliefs are adequately vague, they will be quickly
dominated by the data in the sense that their impact on the final results will diminish as the
number of observations increases. Therefore, given the same specification of a data-generating
process and a large dataset, the frequentist and Bayesian approaches will produce very similar
results.

A question that rises naturally is whether one should use the Bayesian or the frequentist
approach when analyzing a phenomenon. Many textbooks on statistics have attempted in the
past to answer this question in a definite way, most frequently using more arguments against
the opposing approach rather than in favor of the approach they are advocating. The polemic
shows strong tendencies to decline in recent years and a general consensus tends to emerge,
according to which each approach has its benefits and shortcomings and one should exercise
discretion when picking between them. Simple models are equally well tackled by either ap-
proach and, because frequentist statistical and econometric software packages are more readily
available, researchers tend to use frequentist methods to estimate these models’ parameters.
The Bayesian approach appears to be preferred when considering more complicated models in
which maximum likelihood “chokes”. Therefore, the division between frequentist and Bayesian
statisticians/econometricians tends to fade, with most researchers nowadays picking different
methods to tackle different problems.

1.4 Estimation by Simulation

Bayes’ theorem provides a convenient and intuitive device for performing the three primary
tasks of econometrics. However, except in the simplest models, obtaining the posterior densi-
ties in closed form or summarizing the information conveyed by them in a way that is easy to
comprehend involves multidimensional integration. Reliance on analytical solutions seriously
limited the applicability of Bayesian methods in the past. The development or extension of
techniques for obtaining random draws from multivariate distributions of non-standard form
and the increasing speed of computers over the past decades provided an alternative to having
to evaluate these integrals. Instead, simulation is used extensively nowadays to approximate
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the integrals and much more complicated models can be considered. Due to the use of simula-
tion methods, Bayesian estimation techniques are considerably more computationally intensive
than using a frequentist approach, at least when considering simple models. As model com-
plexity increases, however, the computational requirements of integration by simulation usually
increase at a slower rate when compared to the optimization methods used in frequentist in-
ference.

The following section reviews some fundamental results that justify the use of simulation
methods to approximate complicated integrals, which can be expressed as expectations. This
review is followed by a brief discussion of Markov-chain Monte Carlo (MCMC) techniques,
where the methods are presented in an algorithmic fashion. The reader is directed to Chib
(2001) or chapters 6 and 7 from Greenberg (2013) for a formal treatment of the matter.

1.4.1 The Strong Law of Large Numbers and a Central Limit Theorem

Summarizing the information contained in a posterior density, either of the parameters or
of another quantity of interest, involves calculating the moments of the associated random
variable. These moments can always be expressed as expectations and a law of large numbers
can be invoked to justify approximation of the integrals by simulation.6 There are a few
versions of laws of large numbers, but to avoid going into the details of each one of them, we
will be using the Strong Law of Large Numbers (SLLN).7

THEOREM 1.1: Strong Law of Large Numbers
Let X1, X2, . . . be a sequence of G independent and identically distributed random vari-
ables with E (|X |) < ∞. Then:

µ̂G ≡

G
∑

g=1
Xg

G

a.s.→ E (X)

where “
a.s.→ ” denotes almost sure convergence.

Formally defining almost sure convergence requires delving deep into the fundamentals of
probability theory. Instead of going through a series of technical definitions, the usefulness of
the SLLN in the context of estimation by simulation will be illustrated here. For this purpose,
consider a model with a single parameter, θ, whose posterior density function is π (θ|y). To
summarize the information contained in this posterior density we would like, first of all, to
evaluate the expectation:

E (θ|y) =
∫

Θ

θ · π (θ|y) dθ (1.19)

Suppose that we can obtain G random draws from the distribution whose probability density
function is π (θ|y) and denote these draws by θ(1), θ(2), . . . , θ(G). The SLLN states that, as G
becomes larger, the sample mean of these random draws:

x̄θ =

G
∑

g=1
θ(g)

G
(1.20)

converges to E (θ|y). Notice that G is controlled by the researcher and the larger this number
is, the closer the sample mean of the draws is likely to be to the true expectation. Furthermore,
the variance of θ can also be expressed as an expectation:

V (θ|y) =
∫

Θ

(

θ − E (θ|y)
)2 · π (θ|y) dθ (1.21)

6An alternative term used frequently in the context of Bayesian inference instead of simulation methods is
is Monte Carlo methods.

7See Billingsley (1995) for a discussion of the differences between the versions of the laws of large numbers
and, in particular, page 282 for a proof of the SLLN.
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Given the same G draws from the posterior of θ, we can invoke the SLLN a second time to
approximate this variance by the sample variance:

s2θ =

G
∑

g=1

(

θ(g) − x̄θ

)2

G− 1
(1.22)

Even probability statements about the value of θ can expressed as expectations. For example,
the probability that θ is between two fixed numbers, c1 and c2, can be written as:

Prob(c1 ≤ θ ≤ c2|y) =
∫ c2

c1

θ · π (θ|y) dθ =

∫

Θ

1(c1 ≤ θ ≤ c2) · π (θ|y) dθ (1.23)

where 1(·) is the indicator function: its value is equal to one if the statement it takes as an
argument is true and zero otherwise. The last expression can be interpreted as an expectation
of a function of θ and the SLLN suggests that the formula:

G
∑

g=1

1

(

c1 ≤ θ(g) ≤ c2
)

G
(1.24)

can be used to approximate this probability. In practical terms, this formula reduces to cal-
culating the proportion of random draws from the posterior that fall into the [c1, c2] interval,
relative to the total number of draws.

The SLLN states that as G goes to infinity, the simulation-based approximation to the
theoretical expectation becomes better and better, although in a stochastic sense: as we get
more draws from the posterior the approximation could temporarily move away from the
theoretical expectation, but we should be “almost certain” that, with a large enough G, these
deviations will become so small that we can ignore them. In practice, however, we will always
have to work with a finite G and the approximations will always remain imperfect. The Central
Limit Theorem (CLT) presents a way of quantifying the probability of the approximation being
a certain degree off the quantity it is meant to approximate.8

THEOREM 1.2: Central Limit Theorem
Let X1, X2, . . . be a sequence of G independent and identically distributed random vari-
ables with E (X) = µ and V (X) = σ2. Then the sample mean, µ̂G ≡ 1

G

∑G
g=1 Xg,

converges in distribution to a Normal:

√
G (µ̂G − µ)

d→ N
(

0, σ2
)

Loosely speaking and in the context of the single-parameter model used above, the CLT
suggests that, as G increases, the distribution of the discrepancy between the theoretical expec-
tations and their simulation-based approximations9 becomes indistinguishable from a Normal

distribution with mean zero and variance σ2

G . Based on this result, one can use the Normal
distribution to evaluate the probability of |µ̂G−µ| being above any given threshold. Therefore,
it has become common practice to report, along with the Monte Carlo approximations to the
expectations, the corresponding Monte Carlo standard error , defined as

√

s2θ/G, and let the
reader decide whether the approximation is precise enough.10 Keep in mind that, in a Bayesian
inference setting, G represents the number of draws from the posterior distribution and, as
such, it is controlled by the researcher. By increasing the number of draws, the Monte Carlo
standard error can be reduced, although, in practice, not indefinitely (Flegal et al., 2008).

8See Billingsley (1995, p.356-359) for a proof of the CLT.
9µ̂G − µ is a random variable because µ̂G is a random variable. In turn, µ̂G is a random variable because

it is a function of G random variables.
10Theoretically, the variance of µ̂G−µ should be σ2

G
. However, because σ2 is unknown, it is replaced by the

sample variance, which is a consistent estimator of the population variance: as G goes to infinity, s2θ converges
in probability to σ2.
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� Example 1.2 Customer Arrival Rate (Continued)
Using a Gamma prior for the arrival-rate parameter, λ, in the sandwich-store example we expressed
the posterior density of λ as a Gamma density with shape parameter ã = N + a and rate parameter
b̃ =

∑N
i=1 yi + b, where a and b are the hyperparameters. We then used the properties of the Gamma

distribution to calculate E (λ|y) = ã

b̃
and V (λ|y) = ã

b̃2
. We will now approximate these two posterior

moments by drawing random numbers from π (λ|y). Of course, in this simple problem there is no real
need for simulation and the example is provided only for illustrating the use of simulation methods.

Towards this end, let’s fix the values of the hyperparameters as a = 1 and b = 0.25. The following
table presents the simulation-based estimates of the moments, along with the associated Monte Carlo
standard errors, and for increasing numbers of draws from the posterior (G). Compare these results
to the ones obtained using the analytical formulas: E (λ|y) = 4.4359 and V (λ|y) = 0.1948.

# of draws Monte Carlo
(G) E (λ|y) V (λ|y) standard error

100 4.4933 0.2486 0.0499
1,000 4.4407 0.2036 0.0143
10,000 4.4432 0.1934 0.0044

The results presented above can be obtained in BayES by changing the value of G in the code contained
in the following box.

✞ ☎
// import the data and get N and the sum of the values in y

Data = webimport("www.bayeconsoft.com/datasets/WaitingTimes.csv");

N = rows(Data);

sumy = sum(Data.y);

// calculate the posterior parameters

a_tilde = N + 1;

b_tilde = sumy + 0.25;

// draw samples from the posterior

G = 100;

x = gamrnd(a_tilde, b_tilde, G, 1);

// calculate the moments and the Monte Carlo standard error

E_lambda = mean(x);

V_lambda = var(x);

MCse = sqrt(V_lambda/G);

// print the results

print( [E_lambda, V_lambda, MCse] );
✝ ✆

In closing this section, we note that the usefulness of the SLLN and the CLT extends
beyond the case of single-parameter models. In multiple-parameter models, however, the
expectations considered above need to be taken with respect to the marginal density of each
parameter. Let’s consider, for example, a model which involves two parameters, θ1 and θ2 and
suppose that we can obtain G random draws from this joint density. Denote these draws by
θ(1), θ(2), . . . , θ(G), where each θ(g) is a two-dimensional vector. Equations (1.9) and (1.10)
suggest that, to approximate E (θ1|y), one needs to first integrate-out θ2 from π (θ1, θ2|y):

E (θ1|y) =
∫

Θ1

θ1 · π (θ1|y) dθ1 =

∫

Θ1

θ1 ·
[∫

Θ2

π (θ1, θ2|y) dθ2
]

dθ1 (1.25)

Given that the draws are from the joint posterior density of θ1 and θ2, simply summarizing
the values of θ1 contained in θ(1), θ(2), . . . , θ(G) would take care of both integrals:

E (θ1|y) ≈

G
∑

g=1
θ
(g)
1

G
(1.26)

Therefore, the posterior moments of a parameter, as obtained by simulation, are always
marginal with respect to the values of the remaining parameters in the model.
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1.4.2 Markov-Chain Monte Carlo (MCMC)

The results presented in the preceding section can be used to summarize the properties of the
posterior distribution of a model’s parameters, π (θ|y). However, their application requires a
procedure for obtaining independent random draws from this posterior distribution; something
that is not straightforward except in very simple cases. The term Markov-chain Monte Carlo
(MCMC) is used to denote a set of closely related methods that are designed to generate
random draws from complex distributions. The associated algorithms work by constructing
and drawing random numbers from Markov chains, whose stationary distributions are the
same as target distribution, which in a Bayesian estimation problem, is simply the posterior
distribution of the parameters.

The discussion on why and under what conditions these algorithms work in practice becomes
very technical, very quickly and, as such, goes beyond the purposes of this book. The interested
reader is directed to Chib (2001) for a complete presentation. The algorithms themselves,
however, and the intuition behind them will be provided here, because understanding how
MCMC methods work is essential for interpreting the results of the algorithms, as well as
avoiding some pitfalls in applying them.

Before we proceed we note that, when the draws from the posterior are generated using
Markov chains, they are no longer independent. Therefore, the SLLN and CLT that we en-
countered before no longer apply. Nevertheless, versions of the two theorems exist when the
random draws are generated from weakly-dependent processes.11 The important difference
in the case of correlated draws is that, given a sequence of draws from the Markov chain,
X1, X2, . . ., the Monte Carlo standard error,

√

σ2/G, now involves the variance:

σ2 = V (X1) + 2
∞
∑

j=2

Cov (X1, Xj) (1.27)

where V (X1) is the variance of a random variable that follows the same distribution as the
stationary distribution of the Markov chain, and Cov (X1, Xj) is the covariance of this random
variable with another variable, j steps ahead in the Markov chain. If the process that generates
the draws is weakly dependent, then this covariance will go to zero as j tends to infinity. The
practical implication of this result is that, when the draws are autocorrelated, the Monte Carlo
standard error is larger than what could be achieved with independent draws. The inefficiency
factor in this context is defined as:

κ̂ =
σ̂2

s2/G
(1.28)

where σ̂2 is an estimate of the quantity in (1.27) and s2 an estimate of the variance of the draws,
were they independent. Obtaining σ̂2 and s2 presents challenges and, apart from the theoretical
justification of this quantity, Chib (2001) provides a range of approaches for estimating σ̂2.
The inefficiency factor is also known as the autocorrelation time and the inverse of it was first
defined in Geweke (1992) as the relative numerical efficiency.

In expectation, the inefficiency factor will be greater than one and it can be interpreted
as the factor by which one needs to divide the number of autocorrelated draws obtained from
an MCMC sampler, G, to get the number of independent draws, G̃, that would lead to the
same Monte Carlo standard error. G̃ is appropriately called the effective sample size. When
designing an MCMC sampling scheme, the algorithm should be tuned such that the inefficiency
factor is as close to unity as possible, or, to put it differently, to reduce the autocorrelation of
draws from the posterior. If no such effort is made or if the problem is ill-conditioned given
the data, then the information content of the draws may be very limited and a vast amount
or draws may be needed until the Monte Carlo standard error is reduced to reasonable levels.

11See for example Theorem 27.4 in Billingsley (1995, p.364) or Chan & Geyer (1994).
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The Metropolis-Hastings algorithm

The most general MCMC method was first proposed by Metropolis et al. (1953) and extended
by Hastings (1970), leading to an algorithm known as Metropolis-Hastings. Almost all other
algorithms used in Bayesian inference can be viewed as special cases of the Metropolis-Hastings
algorithm. This algorithm comes in many flavors and can be adjusted to take advantage of the
specificities of a particular problem. To fix ideas, we will consider a model with K parameters
and a posterior density π (θ|y). The algorithm starts by fixing an initial value for θ. Based on
this initial value it proposes a move to a new value, θ⋆, using a proposal density, q (θ, θ⋆|y).
The proposal density is chosen by the researcher and, at least in theory, could be any proper
probability density function. Lastly, the proposed value, θ⋆, is accepted with probability:

α (θ, θ⋆|y) = min

{

π (θ⋆|y)
π (θ|y) · q (θ

⋆, θ|y)
q (θ, θ⋆|y) , 1

}

(1.29)

This means that the new value of θ becomes θ⋆ and the process is repeated multiple times.
If the move to θ⋆ is rejected, the state of the Markov chain remains unchanged in the current
iteration. The product of the two fractions inside the minimization operator is known as the
Metropolis-Hastings ratio.

Very frequently in practice the proposal density is chosen to be the multivariate Normal,
centered at the current value of θ and with covariance matrix C:

q (θ, θ⋆|y) = |C|−1/2

(2π)K/2
exp

{

− 1
2 (θ − θ⋆)

′
C−1 (θ − θ⋆)

}

(1.30)

leading to the random-walk Metropolis-Hastings algorithm. This choice is convenient because
q (θ⋆, θ|y) = q (θ, θ⋆|y) for all θ and θ⋆ and, thus, only the ratio of posterior densities needs
to be evaluated when calculating the acceptance probability.

Notice that the acceptance probability involves the ratio of the posterior evaluated at θ⋆

and θ. Thus, for the Metropolis-Hastings algorithm to be applied one needs to know the
posterior density only up to a constant of proportionality. This fact makes the algorithm
very well-suited for Bayesian parameter estimation, given that constants of proportionality are
frequently unknown (see, for example, equation (1.7)).

The only thing left to do before applying the random-walk version of algorithm is to chose
the value of the covariance matrix, C, in the proposal. In theory, any positive-definite matrix
would do. However, different choices would lead to different degrees of autocorrelation of the
draws, which in turn, may have severe consequences for the computational efficiency of the
algorithm. One simple choice is to set C equal to T · IK , where IK is the K×K identity
matrix and T is a tuning parameter, with its value chosen such that approximately 30%-45%
of the proposed moves are accepted. This acceptance rate is an approximation to the optimal
acceptance rate when the target distribution is multivariate Normal, and the precise value
depends on the value of K (Roberts et al., 1997). Intuitively, when T is set to a large value,
the proposed θ⋆ may be too erratic and, therefore, rarely accepted. When T is set to a small
value, the proposed θ⋆ will be frequently accepted, but this will be because θ⋆ is very close to
the current state of the Markov chain, θ. In both cases the draws will be highly autocorrelated.

Finally, to avoid dependence of the results on the initially chosen state of the chain, it
is common practice to let the Markov chain run for a few iterations before start storing the
draws. This is called the burn-in phase of the algorithm. It is important to run a burn-
in because the Metropolis-Hastings algorithm produces draws from a Markov chain whose
stationary distribution is the same as the target distribution, π (θ|y). If the chain starts at
an initial value far away from its stationary distribution, the initial draws will not be from
the target distribution because the chain is still moving towards its stationary distribution.
Additional adjustments can be made during this burn-in phase, for example, getting a better
value for the tuning parameter, T, or a rough estimate of the covariance matrix of θ such that
the proposal density is further tailored to the specific model and dataset.
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The simplest form of the Metropolis-Hastings algorithm, as described above, is given in
Algorithm 1.1 and an application in the context of the sandwich-store example follows, where
the algorithm is implemented in BayES’ language.

Algorithm 1.1 Simple Metropolis-Hastings

set the number of burn-in iterations, D
set the number of draws to be retained, G
set θ to a reasonable starting value
for g = 1:(D+G) do
draw θ⋆ from the proposal, q (θ, θ⋆|y)
accept the move (set current θ equal to θ⋆) with probability:

α (θ, θ⋆|y) = min
{

π(θ⋆|y)
π(θ|y)

q(θ⋆,θ|y)
q(θ,θ⋆|y) , 1

}

if g > D then
store the current value of θ

end if
end for

� Example 1.2 Customer Arrival Rate (Continued)
Consider for a last time the sandwich-store example in which we will continue to assume that each
inter-arrival time, yi, is a draw from an Exponential distribution with rate λ, but we will now use a
log-Normal prior, with hyperparameters m and s2:

p (λ) = 1

λ
√
2πs2

exp

{

−
(log λ−m)2

2s2

}

With this choice of prior, the posterior density of λ becomes:

π (λ|y) ∝ λ
N−1 × exp

{

−λ

N
∑

i=1

yi −
(log λ−m)2

2s2

}

The posterior density does not belong to any known parametric family and we have to use simulation
to summarize the information contained in it. Because λ must be positive, we will use a log-Normal
proposal, with location parameter equal to the logarithm of λ in the current iteration:

q (λ, λ⋆|y) =
T

−1/2

λ⋆ (2π)1/2
exp

{

−
(log λ⋆ − log λ)2

2T

}

where Twill be used as the tuning parameter. The logarithm of the Metropolis-Hastings ratio becomes:

logMH (λ, λ⋆) = log π (λ⋆|y)− log π (λ|y) + log q (λ⋆
, λ|y)− log q (λ, λ⋆|y)

= N (log λ⋆ − log λ)− (λ⋆ − λ)
N
∑

i=1

yi −
(log λ⋆ −m)2

2s2
+

(log λ−m)2

2s2

After setting the values of the hyperparameters as m = 1.4 and s2 = 0.9, as well as the value of
the tuning parameter as T= 0.3, we are ready to implement the algorithm. Note that these values
of the hyperparameters lead to a prior density for λ similar to a Gamma density with shape a = 2 and
rate b = 0.5, so the results obtained here should be comparable to the ones we got with the Gamma
prior. Additionally, the value of T is chosen such that approximatively 38% of the proposed moves are
accepted.

An implementation of the algorithm in BayES’ language is given in the following box. The first two
posterior moments of λ obtained after running this code are E (λ|y) = 4.4445 and V (λ|y) = 0.1907,
respectively.
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✞ ☎
// import the data and get N and the sum of the values in y

Data = webimport("www.bayeconsoft.com/datasets/WaitingTimes.csv");

N = rows(Data);

sumy = sum(Data.y);

// set the values of the hyperparameters and the tuning parameter

m = 1.4; s2 = 0.9; tuning = 0.3;

// set the number of iterations

D = 3000; // # of burn-in iterations

G = 10000; // # of retained draws

// set the starting value for lambda and calculate its logarithm

lambda = 2;

loglambda = log(lambda);

// initialize a vector to store the draws

draws = zeros(G,1);

// start the algorithm

for (g=1:D+G)

// draw log-lambda star from the proposal and calculate its exponential

loglambda_star = normrnd(loglambda,tuning);

lambda_star = exp(loglambda_star);

// calculate the logarithm of the Metropolis-Hastings ratio

logMH = N*(loglambda_star-loglambda)

- (lambda_star-lambda)*sumy

- ((loglambda_star-m)^2 - (loglambda-m)^2)/(2*s2);

// accept/reject the proposed move

if ( log(unifrnd()) < logMH )

lambda = lambda_star;

loglambda = loglambda_star;

end

// store the results from the current iteration ================

if (g>D)

draws(g-D) = lambda;

end

end

// summarize the draws from the posterior

print( [mean(draws); var(draws)] );
✝ ✆

The multiple-block Metropolis-Hastings algorithm

In complex models that contain multiple parameters to be estimated, the simple version of the
Metropolis-Hastings algorithm may become very inefficient, in the sense that it produces very
highly autocorrelated draws from the posterior. This is because, when θ has high dimensions or
it contains parameters with different roles in the model, such as location and scale parameters,
it becomes harder to tailor the proposal to the specific model and dataset. The multiple-
block Metropolis-Hastings algorithm is an extension to the algorithm described above, which
is designed to work in such complex circumstances.

The multiple-block version of the Metropolis-Hastings algorithm works by first partitioning
the parameter vector, θ, into B ≥ 2 blocks, θ1, θ2 . . . , θB. Next, the density of each block,
θb, called this block’s full conditional , is obtained from the posterior density of θ by treating
the parameters contained in all other blocks except θb as fixed. The full conditional for block
θb is denoted by π (θb|y, θ1 . . . , θb−1, θb+1 . . .θB), or, more compactly, by π (θb|•). In this
notation the origin of the term “full conditional” becomes apparent: π (θb|•) is the density of θb

conditional on everything else in the model, both data and parameters. Quantities that involve
the parameters in other blocks and which enter the posterior density multiplicatively, become
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part of the constant of proportionality of π (θb|•). Quantities that enter the posterior density in
forms other than multiplicative remain in the full conditional and, during the implementation
of the algorithm, are evaluated using these parameters’ current values.

Once the full conditionals of all blocks have been derived and simplified, the values of
parameters in each block are updated in succession using the simple form of the Metropolis-
Hastings algorithm. A compete iteration of the multiple-block Metropolis-Hastings involves B
steps: values θ⋆

b are proposed from block b’s proposal density and they are accepted or rejected
using the acceptance probability in (1.29) and while using π (θb|•) in place of π (θ|y). This
process is then repeated for the next block and while conditioning on the current values of all
other parameters, irrespective of whether previous moves have been accepted or rejected.

Without further discussion, the multiple-block Metropolis-Hastings algorithm is given in
Algorithm 1.2. An application of the algorithm in a problem of estimating the parameters of
a Normal distribution follows.

Algorithm 1.2 Multiple-Block Metropolis-Hastings

set the number of burn-in iterations, D
set the number of draws to be retained, G
set θ1, . . . , θB to reasonable starting values
for g = 1:(D+G) do
for b = 1:B do
draw θ⋆

b from its proposal, q (θb, θ
⋆
b |y)

accept the move (set current θb equal to θ⋆
b) with probability:

αb (θb, θ
⋆
b |y) = min

{

π(θ⋆
b |•)

π(θb|•)
q(θ⋆

b ,θb|y)
q(θb,θ⋆

b |y)
, 1

}

end for

if g > D then
store the current value of θ

end if
end for

� Example 1.3 Crab Size
In this example we will consider part of the dataset used by Brockmann (1996) to examine the mating
patterns of horseshoe crabs. The dataset consists of 173 observations on multiple characteristics of
female crabs, but we will use only the variable which measures, in centimeters, the crab’s carapace
width. We will assume that the natural logarithm of carapace width, yi, for each potential observation,
i, is a draw from a Normal distribution with mean µ and variance σ2. This assumption precludes
negative values for the carapace width, which are physically impossible, as it implies that width itself
follows a log-Normal distribution. When working with scale parameters in Bayesian inference, notation
becomes considerably simpler if we re-parameterize the problem in terms of the precision parameter ,
τ ≡ 1

σ2 . Therefore, the model suggests that yi ∼ N
(

µ, 1
τ

)

, leading to the likelihood:

p(y|µ, τ ) =
N
∏

i=1

τ 1/2

(2π)1/2
exp

{

−
τ (yi − µ)2

2

}

=
τN/2

(2π)N/2
exp

{

−
τ

2

N
∑

i=1

(yi − µ)2
}

We will place a Normal prior on µ, with mean m and precision t, and a Gamma prior on τ with
shape and rate parameters a and b, respectively. Application of Bayes’ rule leads to:

π (µ, τ |y) ∝ τ
N/2 exp

{

−
τ

2

N
∑

i=1

(yi − µ)2
}

× exp

{

−
t

2
(µ−m)2

}

× τ
a−1

e
−bτ

We will treat µ and τ as the two blocks of the Metropolis-Hastings algorithm, with full conditionals:

π (µ|•) ∝ exp

{

−
τ

2

N
∑

i=1

(yi − µ)2 −
t

2
(µ−m)2

}
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and:

π (τ |•) ∝ τ
N/2+a−1 exp

{

−τ

[

1

2

N
∑

i=1

(yi − µ)2 + b

]}

respectively. Finally, we will use a Normal distribution as a proposal for µ and a log-Normal distribution
for τ . The mean of the proposal for µ will be the current value of parameter and its precision parameter,
Tµ, will be used as the tuning parameter. The location parameter for τ ’s proposal is set equal to the
logarithm of the current value of τ and its scale parameter, Tτ , is used for tuning (see the previous
example for more details).

An implementation of the multiple-block Metropolis-Hastings algorithm in BayES’ language is
given in the following box. Running this code in BayES produces the results in following table.

Parameter Mean Variance

µ 3.26548 3.104e-05
τ 157.192 278.411
σ 0.08010 1.834e-05

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/CrabSize.csv");

// set the values of the hyperparameters

m = 0; t = 0.001; // prior mean and precision for mu

a = 0.001; b = 0.001; // prior shape and rate for tau

// set the number of iterations

D = 3000; // # of burn-in iterations

G = 10000; // # of retained draws

// set starting values for mu and tau and take the logarithm of tau

mu = 0; tau = 1; logtau = log(tau);

// set the values of the tuning parameters

tuning_mu = 5.0; tuning_tau = 0.3;

// initialize a matrix to store the draws

draws = zeros(G,2);

// calculate some quantities used multiple times

y = log(Data.width);

a_tilde = 0.5*rows(y) + a;

// start the algorithm

for (g=1:D+G)

// sample for mu ===============================================

mu_star = normrnd(mu,1/sqrt(tuning_mu));

logMH = -0.5*tau*(sum((y-mu_star).^2) - sum((y-mu).^2))

-0.5*t*((mu_star-m)^2 - (mu-m)^2);

if ( log(unifrnd()) < logMH )

mu = mu_star;

end

// sample for tau ==============================================

logtau_star = normrnd(logtau,tuning_tau);

tau_star = exp(logtau_star);

logMH = a_tilde*(logtau_star - logtau)

-(tau_star-tau)*(0.5*sum((y-mu).^2) + b);

if ( log(unifrnd()) < logMH )

tau = tau_star;

logtau = logtau_star;

end

// store the results from the current iteration ================

if (g>D)

draws(g-D,1) = mu;

draws(g-D,2) = tau;

end

end



1.4. ESTIMATION BY SIMULATION 25

// add sigma = 1/sqrt(tau) to the draws matrix and summarize

draws_sigma = ones(G,1) ./ sqrt(draws(:,2));

draws = [draws, draws_sigma];

print( [mean(draws); var(draws)] );
✝ ✆

The Gibbs Algorithm

The Gibbs algorithm has its roots in statistical physics and the work of Josiah Willard Gibbs.
It was first described by Geman & Geman (1984), who named the algorithm the Gibbs sampler ,
and became popular among statisticians after Gelfand & Smith (1990) demonstrated its general
applicability to Bayesian inference problems. The Gibbs sampler can be viewed as a special
case of the multiple-block Metropolis-Hastings algorithm in the case where the full conditionals
of all blocks of parameters belong to known parametric families.

To fix ideas, consider a problem that involves K parameters and suppose that the param-
eter vector, θ, has been partitioned into B blocks, θ1, θ2, . . . , θB. Suppose also that the full
conditional of block θb, π (θb|•), takes a form that can be recognized as the probability den-
sity function of a distribution for which there exist fast algorithms to generate random draws
from.12 Then, the proposal density for θb, q (θb, θ

⋆
b |y) can be set to be independent of the

current values of θ and equal to π (θ⋆
b |•). In this case the Metropolis-Hastings ratio simplifies

to one for all values of θ⋆
b and the proposed move is accepted with probability one. This fact

simplifies the procedure of updating the values of θb considerably and, if these simplifications
can be performed for all blocks of θ, one can implement a pure Gibbs sampler. If the full condi-
tionals of only some of the blocks can be derived without missing a constant of proportionality,
then Gibbs updates can be used for these blocks and complete Metropolis-Hastings updates for
the remaining blocks. A term that is used for such a hybrid algorithm is Metropolis-Hastings
within Gibbs .

A pure Gibbs sampler is much simpler and succinct than the multiple-block Metropolis-
Hastings algorithm and it is given in Algorithm 1.3. Following this, the algorithm is imple-
mented in BayES’ language in the context of the problem of estimating the mean and variance
of horseshoe crab carapace width, assuming that the logarithm of this width follows a Normal
distribution.

Algorithm 1.3 Gibbs Sampler

set the number of burn-in iterations, D
set the number of draws to be retained, G
set θ1, . . . , θB to reasonable starting values
for g = 1:(D+G) do
for b = 1:B do
draw θ⋆

b from π (θ⋆
b |•) and set the current value of θb to θ⋆

b

end for

if g > D then
store the current value of θ

end if
end for

� Example 1.3 Crab Size (Continued)
Consider again the problem of estimating the parameters of a Normal distribution for the random
variable that measures the natural logarithm of a crab’s carapace width. Using a Normal prior for the

12In most cases where the full conditional is a member of a known parametric family, π (θb|•) can be derived
without missing a constant of proportionality and the term complete conditional may be used to refer to
π (θb|•).
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mean parameter, µ, of this distribution and a Gamma prior for the precision parameter, τ , we obtained
the following full conditionals:

π (µ|•) ∝ exp

{

−
τ

2

N
∑

i=1

(yi − µ)2 −
t

2
(µ−m)2

}

and:

π (τ |•) ∝ τ
N/2+a−1 exp

{

−τ

[

1

2

N
∑

i=1

(yi − µ)2 + b

]}

respectively. Let’s start from the full conditional of τ . This density resembles the probability density
function of Gamma-distributed random variable with shape and rate parameters ã = N

2
+ a and

b̃ = 1
2

∑N
i=1 (yi − µ)2 + b, respectively. The only thing missing is the constant of proportionality,

which can be derived from the fact that the probability density function of a random variable must
integrate to unity. Therefore:

τ |y, µ ∼ Gamma
(

ã, b̃
)

Additional algebra is required to to show that the full conditional of µ is proportional to

exp
{

− t̃
2
(µ− m̃)2

}

, with t̃ = τN + t and m̃ = 1
t̃

(

τ
∑N

i=1 yi + t ·m
)

. The steps involved in this

derivation are expanding the squares in the original expression for the full conditional of µ, simplifying
and, finally, completing the square by adding and subtracting m̃2 inside the exp operator. We can now
recognize that the full conditional of µ resembles a Normal probability density function with mean m̃

and precision parameter t̃. With t̃1/2

(2π)1/2
as the constant of proportionality, we get:

µ|y, τ ∼ N
(

m̃, 1
t̃

)

We are now ready to implement a Gibbs sampler for this problem. The code contained in the
following box provides an implementation in BayES’ language. Running this code in BayES produces
the results in following table.

Parameter Mean Variance

µ 3.26638 3.713e-05
τ 156.934 289.268
σ 0.08018 1.928e-05

which are almost the same as the ones obtained using the multiple-block Metropolis-Hastings algorithm.
Any discrepancies in the results between the two algorithms are solely due to approximation error of
the integrals, inherent in Monte Carlo methods. Using longer chains should further reduce these
discrepancies.

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/CrabSize.csv");

// set the values of the hyperparameters

m = 0; t = 0.001; // prior mean and precision for mu

a = 0.001; b = 0.001; // prior shape and rate for tau

// set the number of iterations

D = 3000; // # of burn-in iterations

G = 10000; // # of retained draws

// set the starting values for mu and tau

mu = 0; tau = 1;

// initialize a matrix to store the draws

draws = zeros(G,2);

// calculate some quantities used multiple times

y = log(Data.width);

N = rows(y);

sumy = sum(y);

tm = t*m;

a_tilde = 0.5*N + a;
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// start the algorithm

for (g=1:D+G)

// sample for mu ===============================================

t_tilde = tau*N + t;

m_tilde = (tau*sumy + tm)/t_tilde;

mu = normrnd(m_tilde, 1/sqrt(t_tilde));

// sample for tau ==============================================

b_tilde = 0.5*sum((y-mu).^2) + b;

tau = gamrnd(a_tilde, b_tilde);

// store the results from the current iteration ================

if (g>D)

draws(g-D,1) = mu;

draws(g-D,2) = tau;

end

end

// add sigma = 1/sqrt(tau) to the draws and summarize

draws_sigma = ones(G,1) ./ sqrt(draws(:,2));

draws = [draws, draws_sigma];

print( [mean(draws); var(draws)] );
✝ ✆

General Comments on MCMC Methods and Extensions

Before closing this section we make some brief remarks on the application and use of MCMC
methods:

1. The Gibbs sampler was presented here as a special case of the Metropolis-Hastings algo-
rithm. However, other methods can be used within a Gibbs sampler to generate random
draws for a block, even if the full conditional of this block is known only up to a con-
stant of proportionality. Choices include, methods based on rejection sampling and its
extensions or composition sampling. The interested reader is referred to Chib (2001) or
chapter 10 from Gelman et al. (2013) for details.

2. The Gibbs sampler and the multiple-block Metropolis-Hastings algorithm can be shown
to work when, in every iteration, a single block, θb, is chosen at random from the B
blocks and updated, either by sampling directly from its full conditional or using its
proposal and accept/reject steps. In practice however, almost invariably, the algorithms
are implemented in a way such that all blocks are updated sequentially, not randomly, in
an iteration. This is done for two reasons: it is slightly easier to implement an algorithm
that works sequentially and, most importantly, sequential updating tends to produce less
autocorrelated draws from the posterior.

3. When the full conditional of a parameter block belongs to a known family of distri-
butions, most statistical packages will provide built-in procedures for sampling from
this distribution directly. Even if this is not the case, the inverse probability transform
method can be used, especially if the full conditional of the block under consideration
contains only a single parameter. Sampling directly from the full conditional should be
preferred over using a Metropolis-Hastings step for two reasons: (i) producing a draw
directly from a distribution most often involves many fewer computations than evalu-
ating the Metropolis-Hastings ratio and then deciding whether to accept or reject the
proposed move, and (ii) direct sampling usually results in much lower inefficiency factors
than Metropolis-Hastings updates, thus requiring fewer samples from the posterior to
approximate the integrals to a given degree of accuracy.

4. An extension to the simple Gibbs sampler, called collapsed Gibbs sampler can take ad-
vantage of analytical integration results, when these are available, to reduce the degree of
autocorrelation in the draws generated by the sampler. A collapsed Gibbs sampler works
by analytically marginalizing a block from one or more full conditionals. For example,
consider a model that contains three blocks of parameters, θ1, θ2 and θ3. Suppose also
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that θ2 can be integrated out analytically from the joint density of θ1 and θ2 given θ3,
resulting in an expression of the form:

π (θ1|y, θ3) =

∫

Θ2

π (θ1, θ2|y, θ3) dθ2 (1.31)

If sampling from π (θ1|y, θ3) can be accomplished easily, a collapsed Gibbs sampler would
take draws from π (θ1|y, θ3) instead of π (θ1|y, θ2, θ3) and from the regular full condition-
als of θ2 and θ3. In such a simple setting, the collapsed Gibbs sampler can be justified
by blocking θ1 and θ2 together: instead of sampling iteratively from π (θ1|y, θ2, θ3),
π (θ2|y, θ1, θ3) and π (θ3|y, θ1, θ2), one could think of (θ1, θ2) as constituting a single
block and sample iteratively from π (θ1, θ2|y, θ3) and π (θ3|y, θ1, θ2). The former density
can be expressed as:

π (θ1, θ2|y, θ3) = π (θ2|y, θ1, θ3)× π (θ1|y, θ3) (1.32)

thus justifying sampling from π (θ1|y, θ3) instead of sampling from π (θ1|y, θ1, θ3). An
issue to recognize here is that draws from the posterior distribution in a collapsed Gibbs
sampler must be generated in a particular order: as the last expression makes clear, in
the example above it is important to first draw θ1 from π (θ1|y, θ3) and condition on this
value when drawing from π (θ2|y, θ1, θ3), while the drawing from π (θ3|y, θ1, θ2) must
not intervene between these two steps. Collapsed Gibbs samplers can be implemented
in more complex cases and the interested reader is directed to J. S. Liu (1994) and van
Dyk & Park (2008) for further details and some caveats.

5. In some complex models, inefficiency factors for all or some blocks may be extremely
large, no matter how well the Metropolis-Hastings algorithm is tuned or tailored to the
problem. In such cases, to achieve a certain degree of accuracy in the approximation
of the integrals, one may need to take an immense number of draws from the posterior.
However, if these draws need to be stored in memory so that they are available for
processing after the algorithm completes, machine memory limitations may become an
issue, especially in models with many parameters. It has become a common practice in
these cases to use a thinning parameter to reduce the autocorrelation in the draws from
the posterior. The thinning parameter is an integer greater than one and indicates how
many draws from the posterior are drawn consecutively before one is stored in memory.
For example, if the thinning parameter is set equal to 10, then the algorithm may still
need to be run for a large number of iterations, but only one in ten draws from the
posterior is stored. Thinning almost always leads to a reduction in the accuracy with
which the integrals of interest are approximated because it throws away autocorrelated,
yet relevant, information and should be used only in cases of limited machine memory
(Link & Eaton, 2012).

6. Due to the nature of MCMC methods and their reliance on Markov chains, the draws
from the posterior are generated in a sequential fashion. However, if multiple computing
nodes are available on a machine, one may take advantage of the resources by running
multiple chains in parallel. This approach still requires a burn-in phase, either common
to all chains or chain-specific, but after this phase completes, each chain can contribute
draws from the posterior, effectively reducing the amount of time it takes to produce a
certain number of draws. BayES provides built-in facilities for running multiple chains in
parallel for the models it supports.

7. All MCMC algorithms and their variants require a starting point, chosen by the re-
searcher, which can be far away from the stationary distribution of the underlying Markov
chain. When the algorithm is left to run for some iterations, it will, under general condi-
tions, converge to its stationary distribution and this is precisely the role of the burn-in
phase. Beyond that point every draw generated from the algorithm will be a draw from
the stationary distribution and, thus, from the target distribution. However, it is rarely
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possible to theoretically derive the rate of convergence of a chain to its stationary distri-
bution. Therefore, using a short burn-in phase may result in draws that are not from the
target distribution and can lead to invalid inferences. Although there have been multiple
attempts to produce formal convergence diagnostics, the easiest way to check whether
a chain has converged is to plot the draws for some or all parameters in the order they
have been produced by the algorithm and examine the plot for any tendency of the val-
ues to move mainly in one direction. If this is the case then most likely the chain is still
moving towards its stationary distribution and the number of burn-in iterations needs to
be increased. When multiple chains are run in parallel, the usual practice is to plot the
draws for a parameter produced by each chain on the same plot and examine visually
if the the draws from different chains tend to overlap or, using MCMC jargon, examine
if the chains mix well. Such plots can also reveal the degree of autocorrelation in the
draws from the posterior, although the inefficiency factor, defined in equation (1.28), can
provide a numerical measure of this autocorrelation.

1.5 Synopsis

After defining the modern meaning of the term econometrics, this chapter presented the
Bayesian approach to statistical inference as an alternative to frequentist statistics. The three
fundamental quantities in Bayesian inference, the likelihood function, the prior and the pos-
terior densities, were defined and discussed. The theory behind model comparison and pre-
diction was also presented, at a high level of abstraction. The basic simulation methods used
in Bayesian inference were then described, in an algorithmic fashion. This was done, primar-
ily, to introduce the reader to the terminology of Markov chain Monte Carlo, which will be
used throughout this book, as well as to point out some common pitfalls when applying these
simulation methods. It should be stressed that statistical software like BayES make the appli-
cation of MCMC methods easy in the sense that the algorithms used for sampling from the
posterior distribution are already coded for many popular models. However, one should still
be very careful when applying these algorithms and extensive analysis of the results, visual or
otherwise, should follow every application.
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Chapter 2

The Linear Model

2.1 Overview

This chapter presents an extensive discussion of the multiple linear regression model with
Normally distributed errors. Regardless of its simplicity, or maybe because of it, the linear
regression model is one of the most widely used models in applied econometrics and, very
frequently in practice, comprises the first attempt to confront economic theory with data.
Indeed many of the more elaborate econometric models can be viewed as direct extensions
to this model. This is more so the case in a Bayesian setting for an additional reason: the
Bayesian response to increasing model complexity is, usually, to introduce latent variables in
such a way that the complex model can be represented as a linear regression. Therefore, the
techniques discussed here will be useful for the most part of the material that follows and the
reader will be frequently referred back to this chapter.

The chapter starts with the setup of the linear regression model and its interpretation as
a conditional mean model. Presentation of the likelihood function, conjugate priors and the
derivation of the full conditionals for the model’s parameters follows. Specification issues,
model comparison and prediction are also discussed in the context of the model.

2.2 Model Setup and Interpretation

By being largely quantitative, modern economic theory posits relationships among economic
variables in the general form y = f (x1, x2, . . . , xK). In this expression the xs are variables that
can be thought of as driving, causing or determining the value of the response variable, y. In a
consumer’s problem, for example, y would be the quantity of a good demanded by a consumer
and the x variables would include this good’s price, the prices of complementary and substitute
goods, consumer income and any other consumer characteristics that may affect preferences.
Most often economic theory also provides predictions on whether the effect of a variable, xk,
on y is positive or negative, or otherwise bounds the magnitude of this effect. For example an
increase in the good’s own price would lead, except in the case of Giffen goods, to a reduction
in quantity demanded. On the other hand, theory is usually silent about the form that f (·)
takes. The linear regression model is a stochastic model that quantifies causal relationships of
this general form by expressing them as functions which are linear in unknown parameters:

yi = β1xi1 + β2xi2 + . . .+ βKxiK + εi (2.1)

where β1, β2, . . . , βK are parameters to be estimated using data, xi1, xi2, . . . , xiK are the values
of the causal variables for a potential observation, i, from the population under study and yi is

31
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the value of the response variable for the same i. εi is the disturbance or error term associated
with observation i and it captures any remaining variability in y that cannot be explained by
the xs in this model. The error term may be non-zero for multiple reasons. Firstly, even the
original functional relationship between y and the xs is a simplification of reality and cannot
be expected to hold exactly for all subjects in a population. Secondly, the linear model uses an
approximation to the unknown function f (·) and, by definition, this approximation will result
in a some error. However, we would like this error to be, on average, equal to zero or, in other
words, the model to be, on average, able to determine the value of y, given values for the xs.

It becomes apparent from the preceding discussion, where we already used terms related to
statistics such as population and potential observation, that to proceed with the analysis of the
model we need to formalize the discussion in a statistical context. Before doing so we define
some terminology: y in the linear regression model is called the dependent variable and the
xs are the independent variables . Other terms can be used for these two sets of variables, but
we will use the ones presented here, as these are, by far, the most popular among economists.
Finally, we can use the following succinct notation to represent the linear regression model:

yi = x′
iβ + εi (2.2)

where xi is a K×1 vector that stores the values of the independent variables for a potential
observation i and β is a K×1 vector that contains the β parameters.

The linear regression model, as written in either equation (2.1) or (2.2), is a model for the
determination of y in the population. In this context, yi and εi are random variables and xi

is a random vector. We will assume in this chapter that the error term is independent of xi

and that it follows a Normal distribution with mean zero and variance σ2. The variance of
the error term is another parameter to be estimated along with the βs and, to simplify the
algebra necessary to proceed with estimation, we will express the distribution of εi in terms
of the precision parameter : εi ∼ N

(

0, 1
τ

)

, where τ ≡ 1
σ2 . From the properties of the Normal

distribution and given the independence assumption, we get that yi|xi ∼ N
(

x′
iβ,

1
τ

)

. This, in
turn, implies that:

E (yi|xi) = x′
iβ (2.3)

In words, the expected value of y, conditional on the independent variables, is a linear function
of the independent variables and the parameters. If we knew the values of the parameters and
somebody gave us values to plug in for xi, then we would be able to state what the expected
value of yi is.

The discussion in the preceding paragraph may be dense, but using a concrete example
will help illuminate any points that remain unclear. Suppose that our objective is to quantify
the role of prices and household characteristics in determining the monthly expenditure on
food products by each household, i, within a certain geographical region. Our population
is, therefore, all households located within this region and, at this stage, i is used to index
households in this population. In the context of this example, yi is the amount of money
that household i spends on food products and xi contains the prices that this same household
faces, as well as other household characteristics. Notice that we have not yet said anything
about the availability of data. Nevertheless, we can write down a model that describes how
y is determined in the population, even before we obtain the data. While still being in the
design phase of the research, suppose that we plan to administer a questionnaire to a sample
of N randomly selected households in the region of interest, so that we collect data on the
dependent and independent variables. Before we actually record the responses of household
i, we cannot know the values of these variables. Of course, this is to be expected: yi and xi

are random variables at this stage. However, our model provides a rule that we expect these
variables to follow: yi follows a Normal distribution, conditional on xi, with expected value
x′
iβ and variance 1

τ . That is, the model can be thought of as an assumption on the process
that will generate our data, the data-generating process . The data that we may collect on the
dependent and independent variables are only useful for estimating the parameters, not for
defining the model.



2.3. LIKELIHOOD, PRIORS AND POSTERIOR 33

The interpretation of the linear regression model as a specification of a conditional expec-
tation gives a direct meaning to the values of the β parameters. For example, the parameter
associated with the k-th independent variable measures the effect of a change in the value of
xk on the expected value of y, given that no other values change in the model:

βk =
∂ E (yi|xi)

∂xik
(2.4)

Using econometric jargon, βk is the marginal effect of xk on y.
Before we close this section, we note that the linear regression model can be expressed even

more compactly using notation which will probably be familiar to readers with prior exposure
to frequentist econometrics, but which also has the potential to create a lot of confusion. With
N potential observations on the dependent and independent variables and by stacking these
potential observations one under the other, the linear model can be written as:

y = Xβ + ε (2.5)

where:

y =











y1
y2
...
yN











, ε =











ε1
ε2
...
εN











and X =











x′
1

x′
2
...

x′
N











=











x11 x12 · · · x1K

x21 x22 · · · x2K

...
...

. . .
...

xN1 xN2 · · · xNK











In this notation, ε follows a multivariate Normal distribution with expected value equal to an
N× 1 vector of zeros. Assuming that the error terms across observations are, conditional on
X, independent from one another, the covariance of this Normal distribution is 1

τ IN . From
the properties of the Normal distribution, this representation implies that y|X ∼ N

(

Xβ, 1
τ IN

)

and E (y|X) = Xβ. This representation still describes the data-generating process in the
population and the term “potential observation” was used multiple times to stress that y and
X are random. One can think of this as the analysis being still at the design phase and the
plan is to get N observations from the population. Before the data are actually observed, all
quantities in (2.5) are random.

2.3 Likelihood, Priors and Posterior

By definition, the likelihood function is the probability density function of a potential dataset,
given the values of the parameters and evaluated at the observed data points. Intuitively,
the likelihood function gives the likelihood of observing the data we do actually observe, if the
model is correctly specified and if we knew the values of the parameters. From the assumptions
made by the linear regression model we know that each observed yi is a draw from a Normal
distribution. Given the conditional independence assumption made on the error terms, this
density can be expressed as:

p(y|X,β, τ) =

N
∏

i=1

p(yi|xi,β, τ) =

N
∏

i=1

τ1/2

(2π)
1/2

exp
{

−τ

2
(yi − x′

iβ)
2
}

(2.6)

Collecting terms and using the matrix representation of the model in equation (2.5) leads to:

p(y|X,β, τ) =
τN/2

(2π)
N/2

exp
{

−τ

2
(y −Xβ)′ (y −Xβ)

}

(2.7)

Some clarification is in place here because the notation used, although standard in both
frequentist and Bayesian treatments of the model, may be misleading. y, X and ε in equation
(2.5) are random variables and, as such, have a probability density function. By definition,
(2.7) expresses the probability density function of y|X. And here comes the tricky part: in
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the context of estimation, where we need to evaluate this probability density function at the
observed data points, y and X are also used to represent the vector and matrix, respectively,
that store the observed data. To put it differently, while in basic statistics one typically uses
upper-case letters to represent random variables and the corresponding lower-case letters to
represent possible values or realizations of these random variables, in the linear regression
model the same symbols are used to represent both. This is a fine point that may catch even
seasoned statisticians off-guard when asked to state the assumptions behind a stochastic model
without reference to the data.

We can now move to the specification of the priors for the model’s parameters. The linear
regression model provides a natural blocking of its parameters: β and τ . This is because the
slope coefficients in β define the conditional mean of y and enter the likelihood function as
a group, while τ defines the variance of y and appears in the likelihood function in entirely
different places. Additionally, we do not need to impose any restrictions on the values of β,
except if economic theory requires so, while we need to restrict τ to be positive.

The functional form of the priors makes a big difference for the estimation of the model’s
parameters. If the priors are conjugate or, otherwise, lead to full conditionals that belong to
parametric families from which it is easy to draw random numbers directly, then one can use
a Gibbs sampler instead of full Metropolis-Hastings updates. For the linear regression model
Zellner (1971, chapter 3) shows that the Normal-Gamma prior is conjugate. The Normal-
Gamma prior is rather peculiar: the prior for τ is Gamma with hyperparameters a and b and
the prior for β conditional on τ is multivariate Normal with mean m and variance matrix
1
τV, where m and V are β’s hyperparameters. Because this prior is conjugate, the joint
posterior density of β and τ is also Normal-Gamma and there is no need to use simulation to
approximate its moments, since they can be obtained from the marginal posterior densities of
the two blocks (Koop, 2003). It is stressed, however, that this prior and the results associated
with it were proposed in a period before application of MCMC methods became widespread,
and when forcing the posterior density to be a member of a known parametric family was,
almost, a necessity.

In the Normal-Gamma prior, the prior variance of β depends on τ ’s hyperparameters and
this may pose some problems when eliciting the values of a, b, m and V such that they conform
to prior beliefs. Throughout this textbook we will, instead, use independent priors for the two
blocks: we will keep assuming that τ follows a Gamma distribution, but we will assume that
β follows a multivariate Normal distribution, marginally with respect to τ :

p(β) =
|P|1/2

(2π)
K/2

exp

{

−1

2
(β −m)

′
P (β −m)

}

and p(τ) =
ba

Γ (a)
τa−1e−bτ (2.8)

It is stressed that, although we assume that β and τ are independent in the prior, this will
not be the case in the posterior. Finally, notice that, as it was the case until now with
scale parameters, we express the density of β in terms of the inverse of the variance matrix:
P is the prior precision matrix . This re-parameterization simplifies algebraic manipulations
considerably.

We are now ready to derive the posterior density of the parameters. By a standard appli-
cation of Bayes’ theorem we get:

π (β, τ |y,X) ∝ p(y|X,β, τ)× p(β)× p(τ)

=
τN/2

(2π)
N/2

exp
{

−τ

2
(y −Xβ)′ (y −Xβ)

}

× |P|1/2

(2π)
K/2

exp

{

−1

2
(β −m)′ P (β −m)

}

× ba

Γ (a)
τa−1e−bτ

(2.9)

The posterior density can be simplified in quite a few ways, but we should keep in mind
what is our objective: we want to derive the full conditionals of β and τ so that we are able
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to implement a Gibbs sampler and estimate their posterior moments. This is done in the
following section.

2.4 Full Conditionals and Parameter Estimation

The task of deriving the full conditionals of β and τ from the posterior density in (2.9) may
appear daunting. The algebra required is indeed tedious, but also quite simple. We will
derive these full conditionals here step-by-step because the derivation can be used as a detailed
example on how the algebra works. However, we will refrain from presenting similar derivations
elsewhere, since the entire purpose of using a software like BayES is to avoid having to go through
this exercise.

Let’s start by deriving the full conditional for τ . By dropping terms from the posterior that
enter multiplicatively and do not involve τ we get:

π (τ |•) ∝ τN/2 exp
{

−τ

2
(y −Xβ)

′
(y −Xβ)

}

× τa−1e−bτ (2.10)

Next, collecting terms leads to:

π (τ |•) ∝ τN/2+a−1 exp

{

−τ

[

1

2
(y −Xβ)

′
(y −Xβ) + b

]}

(2.11)

which looks like the probability density function of a Gamma-distributed random variable with
shape and rate parameters, ã = N

2 + a and b̃ = 1
2 (y −Xβ)′ (y −Xβ) + b, respectively. The

only thing missing is a constant of proportionality, which must be equal to b̃ã

Γ(ã) so that π (τ |•)
integrates to unity. Therefore:

π (τ |•) = b̃ã

Γ (ã)
τ ã−1e−b̃τ (2.12)

Deriving the full conditional of β is slightly more challenging. Let’s start by dropping terms
from the posterior that enter multiplicatively and which do not involve β:

π (β|•) ∝ exp
{

−τ

2
(y −Xβ)

′
(y −Xβ)

}

× exp

{

−1

2
(β −m)

′
P (β −m)

}

(2.13)

Carrying out the multiplications, dropping, for a second time, terms that do not involve β and
collecting terms leads to:

π (β|•) ∝ exp

{

−1

2

[

β′ (τX′X+P)β − β′ (τX′y +Pm)− (τy′X+m′P)β

]}

(2.14)

The next step, which is not intuitive, is to simplify the expression by defining P̃ = τX′X+P
and m̃ = P̃−1 (τX′y +Pm). With these definitions the expression inside the square brackets
becomes β′P̃β − β′P̃m̃ − m̃′P̃β. The final step requires “completing the square” in this
expression. By adding m̃′P̃m̃ inside the square brackets1 and collecting terms we obtain:

π (β|•) ∝ exp

{

−1

2
(β − m̃)

′
P̃ (β − m̃)

}

(2.15)

From this expression it is easy to see that π (β|•) is proportional to a multivariate Normal

density. Again we are missing a constant of proportionality, which has to be equal to |P̃|1/2
(2π)K/2

for the density to integrate to unity. Therefore:

π (β|•) = |P̃|1/2

(2π)K/2
exp

{

−1

2
(β − m̃)′ P̃ (β − m̃)

}

(2.16)

These results are presented here in the form of a theorem, so that we can refer back to
them whenever need arises.

1Adding this quantity inside the square brackets is equivalent to multiplying the entire expression of the full

conditional by exp
{

− 1
2
m̃′P̃m̃

}

and, thus, affects only the constant of proportionality.
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THEOREM 2.1: Full Conditionals for the Linear Model
In the linear regression model with Normally distributed error and K independent vari-
ables:

yi = x′
iβ + εi, εi ∼ N

(

0, 1
τ

)

and with a Normal prior for β and a Gamma prior for τ :

p(β) =
|P|1/2

(2π)
K/2

exp

{

−1

2
(β −m)

′
P (β −m)

}

and p(τ) =
ba

Γ (a)
τa−1e−bτ

the full conditionals of β and τ are, respectively, Normal and Gamma:

π (β|•) = |P̃|1/2

(2π)
K/2

exp

{

−1

2
(β − m̃)

′
P̃ (β − m̃)

}

and π (τ |•) = b̃ã

Γ (ã)
τ ã−1e−b̃τ

where:

� P̃ = τX′X+P

� m̃ = (τX′X+P)
−1

(τX′y +Pm)

� ã = N
2 + a

� b̃ = 1
2 (y −Xβ)

′
(y −Xβ) + b

With the full conditionals at hand we are ready to implement the Gibbs sampler. This
sampler would involve sampling from the full conditional of each of the two blocks, β and τ ,
within each iteration. We will not present an implementation here, but the interested reader
is directed to the lm.bsf script file, which can be found in the directory "Samples/4-Functions"

(created during BayES’ installation), which contains such an implementation. Instead, the
following example contains an application of the linear regression model, using BayES’ built-in
sampler.

� Example 2.1 Expenditure on Food Products by Households in the Netherlands
In this example we will consider part of the dataset used by Adang & Melenberg (1995). The dataset
contains information on 90 households located in the Netherlands, each one of them observed for 42
consecutive months. The variables in the dataset are:

expFood : monthly expenditure on food products, in 100’s of Guilders
expOther : monthly expenditure on other products, in 100’s of Guilders

pFood : a price index for food products, April 1984=100
pOther : a price index for other products, April 1984=100
Hsize : number of household members

Children : number of household members younger than 11 years

Our objective is to estimate the parameters of a model that determines monthly household expen-
diture as a function of prices and other household characteristics. The model for the population (all
households located in the Netherlands) is:

expFoodi = β1 + β2pFoodi + β3pOtheri + β4expOtheri + β5Hsizei + β6Childreni + εi

Using BayES’ lm() function and given the data at hand, we obtain the results in the following table.

Mean Median Sd.dev. 5% 95%

constant -4.72133 -4.73423 5.43244 -13.6764 4.21482
pFood 0.0725127 0.0730401 0.0445887 -0.00084805 0.145471
pOther 0.0140819 0.0140129 0.0311635 -0.0374249 0.0655787
expOther 0.0188497 0.0188519 0.00155341 0.016298 0.0214029
Hsize 0.429952 0.429473 0.0499011 0.348149 0.513194
Children -0.207939 -0.207817 0.0731264 -0.328807 -0.0886875

tau 0.178622 0.178583 0.00411218 0.171855 0.185456
sigma e 2.36657 2.36636 0.0272516 2.3221 2.41223

The first column of the table contains the names of the variables with which each parameter
is associated. For example, β1 is associated with a constant variable (β1 is always multiplied by
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one in the model), β2 is associated with pFood, etc. The second column contains the posterior
mean of each parameter, while the third and fourth columns the corresponding posterior medians and
standard deviations. The last two columns give the endpoints of the 90% credible intervals. These are
constructed by dropping 5% of the draws from each tail of the marginal distribution of each parameter.
The bottom block of the table presents similar results for the precision parameter of the error and for
its standard deviation, using the relation σ = 1√

τ
.

Let’s interpret the posterior means one by one. If all independent variables were equal to zero
except for the constant term, then we would expect household expenditure to be about -472 Guilders.
Of course this number does not make sense, but restricting prices or household size to zero does
not make much sense either. All other things equal, if the price index for food products increases
by one unit, expenditure for food products is expected to increase by about 7 Guilders, while if the
price index of other products increases by one unit then expected expenditure increases by about 1.4
Guilders. Notice, however, that the 90% credible intervals for each of the last two variables contain
zero, suggesting that a strictly positive effect is not very likely. When expenditure on other products
increases by 100 Guilders we should expect expenditure on food products to increase by about 1.9
Guilders. Finally, an additional member to the household increases expected expenditure on food
products by about 430 Guilders, while if this additional member is younger than 11 years of age, the
increase in expected expenditure is lower: 430-208 = 222 Guilders.

To assess the performance of the MCMC sampler, one can use BayES’ diagnostics() function.
This function will produce a table that contains estimates of the MCMC standard error, as well as
of the inefficiency factor, per parameter. Visually assessing the performance of the MCMC sampler
can be achieved by drawing diagnostics plots for each parameter, using BayES’ plotdraws() function.
The figure below contains such a plot for the τ parameter of the model. The two subplots at the top
present a history and a correlogram of the draws for τ and indicate that these are not autocorrelated.
The two remaining subplots present a histogram and an estimate of the kernel density of the draws.
Both of them are smooth, suggesting that the sampler did not get trapped for any considerable amount
of draws in specific regions of the sample space.
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Obtaining the table and plot presented above using BayES can be achieved using the code in the
following box. Note that we have used the default values for the hyperparameters, which may not be
appropriate for all applications. The reader is directed to BayES’ documentation for details on what
these default values are and how to alter them.✞ ☎

// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/FoodExp.csv");

// construct the constant term (a variable always equal to one)

Data.constant = 1;

// run the model

myModel = lm(expFood ∼ constant pFood pOther expOther Hsize Children);

// plot the draws for tau

plotdraws(tau, "model"=myModel);
✝ ✆
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2.5 Other Functional Forms and Marginal Effects

The linear regression model expresses a relationship of the general form y = f (x1, x2, . . . , xK)
as a linear function of the parameters and assumes that noise enters the resulting expression
additively. This two qualifications do no require the relationship between y and the xs to be
linear. To take this issue further, consider a simplified version, where K = 3 and that x1 is
always equal to one. The following model is, of course, linear in the parameters:

yi = β1 + β2xi2 + β3xi3 + εi (2.17)

Furthermore, the marginal effects of x2 and x3 are β2 and β3, respectively. However, the model:

yi = β1 + β2xi2 + β3xi3 + β4x
2
i2 + β5xi2xi3 + εi (2.18)

is linear in the parameters as well, although it is non-linear in the xs: x2 enters this expression
once linearly and associated with β2, once as a quadratic term and associated with β4 and
once as an interaction term with x3 and associated with β5. That is, the xs may affect y
non-linearly, while the results described above can still be applied to this model. To proceed
with estimation we simply need to treat the constant term, xi2, xi3, as well as x

2
i2 and xi2xi3

as independent variables in the linear regression model and define xi, accordingly, as a 5×1
vector.

Due to the non-linear fashion in which the xs enter the model in (2.18), their marginal
effects are more complex. The marginal effect of xi2 and xi3 on yi are:

∂ E (yi|xi)

∂xi2
= β2 + 2β4xi2 + β5xi3 and

∂ E (yi|xi)

∂xi3
= β3 + β5xi2 (2.19)

respectively. The marginal effects now depend on the values of the xs themselves, but this is
to be expected: if x2 affects y in a non-linear fashion, then its effect on y should vary by the
value of x2.

Because the marginal effects vary by the values of the xs, a question that arises is at what
point should these effects be calculated and reported. Sometimes, interest may center on the
marginal effect of a variable at specific values of the xs and, depending on the research question,
economic theory may provide a natural point at which the effects should be evaluated. Quite
often, however, no such natural point exists and an approach used frequently in practice is to
evaluate the marginal effects at the sample means of the observed data. This would amount, for
example, to reporting the marginal effect of x3 on y as the number that results from plugging
into the relevant expression from (2.19) the values for β3, β5 and the sample mean of xi2, x̄2.
Of course, the uncertainty around the values of β3 and β5 is transmitted to the marginal effect
and one could get the posterior moments of this marginal effect by evaluating it at all draws
of β3 and β5 from the posterior and summarizing.

Let’s return to the general problem of representing the possibly non-linear relationship
among K xs and y. If no argument can be made in favor of a specific functional form of this
relationship, one could use a flexible functional form, obtained by approximating f (·) by a
second-order Taylor-series expansion around a K×1 vector of zeros:

f (x1, x2, . . . , xK) ≈ f (0, 0, . . . , 0) +
K
∑

k=1

∂f

∂xk
· xk +

1

2

K
∑

k=1

K
∑

ℓ=1

∂2f

∂xk∂xℓ
· xk · xℓ (2.20)

The first term in this expression is the value of f (·) evaluated at the vector of zeros and
becomes the constant term in a linear regression model. Similarly, the first- and second-order
derivatives, all evaluated at the vector of zeros, become parameters associated with the original
xs and their interactions, respectively. Notice that from Young’s theorem we get:

∂2f

∂xk∂xℓ
=

∂2f

∂xℓ∂xk
(2.21)
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and the parameter associated with xk ·xℓ should be equal to the one associated with xℓ ·xk.
For example, when y = f (x2, x3)

2, the Taylor-series expansion leads to the linear regression
model:

yi = β1 + β2xi2 + β3xi3 + β4x
2
i2 + β5xi2xi3 + β6x

2
i3 + εi (2.22)

where β2 and β3 are the partial derivatives of f (·) with respect to x2 and x3, β5 is the second
cross-derivative and β4 and β6 are equal to

1
2 times the second-order derivatives with respect to

x2 and x3, respectively, and all these derivatives are evaluated at the point (x2, x3) = (0, 0). It
becomes apparent that, although flexible, this approach leads to a proliferation of parameters to
be estimated and it is, therefore, mostly useful in situations with large numbers of observations.

Sometimes economic theory may suggest functional forms for the relationship between the
causal variables and the response variable. For example, a popular choice for representing the
aggregate production function in growth economics is the Cobb-Douglas form: Y = A (t)KαLβ ,
where Y is the amount of produced output and K and L are the amounts of capital and labor
input employed during production. A (t) is a productivity index and α and β are parameters to
be estimated, which, however, enter the model non-linearly. Nevertheless, taking the natural
logarithm of both sides of the last expression leads to log Y = logA (t)+α logK+β logL. After
appending an error term and assuming that logA (t) can be adequately represented as A0+γt,
the parameters of the Cobb-Douglas function can be estimated using a linear regression model
of the form:

log Yi = β1 + β2 logKi + β3 logLi + β4t+ εi (2.23)

where log Yi, logKi and logLi are the dependent and independent variables, t is a time trend
and β1 ≡ A0, β2 ≡ α, β3 ≡ β and β4 ≡ γ are the parameters to be estimated. That is, by
applying monotonic transformations to both sides of a relationship that is implied by economic
theory, we may be able to turn a model which is not linear in the parameters into one that is.

Although the model in (2.23) is linear in the parameters, the relationship between the inputs
and output is not. Using the conditional expectation interpretation of the linear regression
model, equation (2.23) implies that E (log Yi|Ki, Li, t) = β1 + β2 logKi + β3 logLi + β4t and
the marginal effect of logKi on log Yi is:

β2 =
∂ E (log Yi|Ki, Li, t)

∂ logKi
=

∂ log E (Yi|Ki, Li, t)

∂ logKi
=

∂ E (Yi|Ki, Li, t)

∂Ki
· Ki

E (Yi|Ki, Li, t)
(2.24)

which has the form of an elasticity. Therefore, β2 in (2.23) gives the percentage change
in output caused by a 1% increase in the amount of capital. This argument carries over
to the interpretation of β3 as an elasticity and extends to all models in double-log form,
log yi = (logxi)

′
β + εi, or in forms where only some of the independent variables are in

logarithms, log yi = (logxi)
′
β + z′iγ + εi.

It is stressed that, in general:

∂ log E (yi|xi)

∂ log xik
6= ∂ E (log yi|xi)

∂ log xik
(2.25)

and either definition of elasticity can be used in stochastic models, with the choice usually being
based on convenience. Wooldridge (2002, p.17) shows that the two definitions are equivalent
if the error term is independent of xi; an assumption that we are maintaining throughout this
chapter. In particular, if εi|xi ∼ N

(

0, 1
τ

)

in the double-log model log yi = (logxi)
′
β + εi,

then log yi|xi follows a Normal distribution as well. By definition, yi|xi follows a log-Normal
distribution and from the properties of this distribution we get:

log E (yi|xi) = (logxi)
′
β + 1

2τ (2.26)

From this expression we can see that ∂ log E(yi|xi)
∂ log xik

= βk = ∂ E(log yi|xi)
∂ log xik

.

2Notice that we dropped x1 from the set of causal variables to keep notation consistent with previous
expressions.
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There are a few practical reasons why one may choose to model the logarithm of yi instead
of its level. By taking the logarithm of the dependent variable the model restricts the value of
yi to be strictly positive and this restriction is very frequently a reasonable one, given the na-
ture of economic data. Additionally, the distribution of log yi may be much more concentrated
and symmetric around its mean than that of yi. Although the linear regression model requires
the dependent variable to follow a Normal distribution only conditionally on the independent
variables, it is still easier to model a variable that follows a more-or-less symmetric distribution,
even marginally with respect to xi. This is because, when the density of the dependent variable
has a long tail to the right, observations with extremely large values on this variable have a dis-
proportionate impact on the parameter estimates. The role of the logarithmic transformation
in such cases is to remove the long tail from the density of the dependent variable.

Even when the the relationship between y and the xs is modeled in logarithms, there
may still be scope for using as independent variables squared and interactions terms of the
logarithms of the xs. The translog is another flexible functional form, obtained by taking a
second-order Taylor-series expansion of log y = log f (log x1, logx2, . . . , log xK) around a vector
of ones (for the xs):

log f (log x1, log x2, . . . , log xK) ≈ log f (0, 0, . . . , 0) +

K
∑

k=1

∂ log f

∂ log xk
· log xk

+
1

2

K
∑

k=1

K
∑

ℓ=1

∂2 log f

∂ log xk∂ log xℓ
· log xk · log xℓ

(2.27)

In the translog specification the marginal effects are still interpreted as elasticities, which now
vary by the levels of the independent variables.

� Example 2.2 Aggregate Production Function
In this example we will use aggregate data, taken from the Penn World Table, Version 9.0 (Feenstra et
al., 2015). The dataset contains annual information on a series of aggregate variables for the EU-15
Member States from 1970 to 2014. The ones we will use here are:

Y : real GDP at constant national prices (in mil. $2011)
K : capital stock at constant national prices (in mil. $2011)
L : number of persons engaged (in millions), adjusted for human capital

trend : a trend variable running from −22 to +22

We will start by estimating an aggregate production function, assuming that it can be adequately
described by the Cobb-Douglas form:

logYi = β1 + β2 logKi + β3 log Li + β4trendi + εi

The results obtained using BayES’ lm() function are presented in the following table. For this model
we use the default priors for the βs and the precision parameters of the error term: the 4×1 vector
β is assumed to follow a Normal distribution with mean equal to a vector of zeros and a diagonal
precision matrix, with its diagonal elements set equal to 10−4, while τ is assumed to follow a Gamma
distribution in the prior, with both shape and rate parameters set equal to 10−4. The priors for both
blocks are very vague in the context of the application.

Mean Median Sd.dev. 5% 95%

constant 3.24514 3.24896 0.279077 2.784 3.69835
logK 0.583076 0.582767 0.0238982 0.544447 0.622634
logL 0.441425 0.441675 0.0225753 0.403951 0.477781
trend 0.00119668 0.00120461 0.000508724 0.000353659 0.0020245

tau 72.1455 72.0801 3.9129 65.778 78.7437
sigma e 0.117862 0.117787 0.00320426 0.112692 0.123302

From this table we see that the posterior expected value of the output elasticity with respect
to capital is about 0.583 and that it is within the interval [0.544, 0.623] with probability 90%. The

http://www.rug.nl/ggdc/productivity/pwt/
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corresponding value and interval for the elasticity with respect to labor are 0.441 and [0.404, 0.478].
Finally, output tends to increase by 0.12% per year due to autonomous technological progress.

We will now extend the Cobb-Douglas model and estimate a translog production function:

logYi = β1 + β2 logKi + β3 log Li + β4trendi

+ β5 logKi logKi + β6 logKi log Li + β7 log Li log Li

+ β8trendi logKi + β9trendi log Li + εi

If we proceed to create the interaction terms and estimate the model, we will get parameter
estimates for the βs, which will depend on the units of measurement of the independent variables. Of
course, marginal effects will still be in the form of elasticities, but obtaining them requires additional
calculations. However, if we transform the independent variables by subtracting their sample means
from the observed values:

l̃ogKi = logKi − logK and l̃og Li = log Li − log L

before creating interaction terms and estimating the model, this will make the parameters associated
with the first-order terms directly interpretable as elasticities evaluated at the point defined by the
geometric means of K and L (arithmetic means of logK and logL) across observations. This is
because, the marginal effect, for example, of capital in the transformed variables will be:

∂ E
(

logYi

∣

∣l̃ogKi, l̃og Li

)

∂ l̃ogKi

= β2 + 2β5 l̃ogKi + β6 l̃og Li + β8trendi

and if we evaluate this expression at the arithmetic means of the right-hand side variables we will get
β2, as the means of the transformed variables are zero (notice that the sample mean of the trend
variable is already zero).

After performing these transformations and running the model using BayES’ lm() function, we
obtain the results presented in the following table. Again, we use BayES’ default priors for the lm()

function. The results for the parameters associated with the first-order terms (β2, β3 and β4) are very
similar to the ones obtained from the Cobb-Douglas model, although the credible intervals for some of
the parameters on the second-order terms do not include zero. For example the parameter associated
with variable tlogK is negative with probability greater than 95% and the parameter associated with
variable tlogL is positive with probability greater than 95%, both of these findings suggesting that
technological progress during the period covered by the data was not neutral.

Mean Median Sd.dev. 5% 95%

constant 12.7573 12.7573 0.0064693 12.7467 12.7678
logK 0.570639 0.570463 0.0260929 0.527734 0.613743
logL 0.44325 0.443427 0.0247698 0.402362 0.484039
trend 0.00140262 0.00140398 0.000524615 0.000547946 0.00226372
logKlogK 0.196592 0.196859 0.10778 0.0194922 0.374709
logKlogL -0.29448 -0.294986 0.210733 -0.642433 0.0504442
logLlogL 0.0963105 0.0962573 0.102469 -0.0717326 0.265435
tlogK -0.00700459 -0.00700388 0.00300928 -0.0119623 -0.00205764
tlogL 0.00491162 0.00492376 0.00288508 0.000153932 0.00963616

tau 81.4347 81.3652 4.47955 74.1769 88.9722
sigma e 0.11094 0.110862 0.00305806 0.106017 0.116109

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

// construct the constant term and take logs of inputs and output

Data.constant = 1;

Data.logY = log(Data.Y);

Data.logK = log(Data.K);

Data.logL = log(Data.L);

// run the Cobb-Douglas model

CobbDouglas = lm(logY ∼ constant logK logL trend);
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// normalize inputs and create interaction terms

Data.logK = Data.logK - mean(Data.logK);

Data.logL = Data.logL - mean(Data.logL);

Data.logKlogK = Data.logK.*Data.logK;

Data.logKlogL = Data.logK.*Data.logL;

Data.logLlogL = Data.logL.*Data.logL;

Data.tlogK = Data.trend.*Data.logK;

Data.tlogL = Data.trend.*Data.logL;

// run the translog model

Translog = lm(logY ∼ constant logK logL trend

logKlogK logKlogL logLlogL tlogK tlogL);
✝ ✆

2.6 Post-Estimation Inference

Estimating the parameters of a linear regression model accomplishes the first task of econo-
metrics. The remaining two tasks are evaluating the plausibility of statements that involve
the parameters or otherwise comparing alternative models/theories and, in the context of the
linear regression model, producing predictions for the values of the dependent variable. We
will use the term post-estimation inference to describe these tasks, although we will treat them
separately in the following subsections.

2.6.1 Imposing Parametric Restrictions and Evaluating their Plausibility

Although economic theory is rarely informative about the functional form of the relationship
between the causal variables and the response variable, it frequently provides restrictions on
the signs of the marginal effects or the interdependence of these effects. Because marginal
effects are always functions of the parameters in the linear regression model, the plausibility
of restrictions prescribed by theory can be evaluated using evidence from the data or the
restrictions can even imposed on a model.

Let’s consider the example of the aggregate production function, assuming that this takes
the Cobb-Douglas form. The linear regression model resulting from this assumption is:

log Yi = β1 + β2 logKi + β3 logLi + β4t+ εi (2.28)

In this model β4 measures the rate of increase in output only due to the passage of time and the
role of the time trend in this model is precisely to capture technological progress.3 Arguably,
technological progress moves in one direction, with any innovations that result from research
and development efforts being adopted by firms only if these innovations increase productivity.
This argument suggests that β4 should be positive and any evidence from the data against
this would raise questions about the theory itself or the adequacy of the Cobb-Douglas form
to represent the actual production function. Given the uncertainty associated with the value
of a parameter, what would constitute evidence against the hypothesis would be showing that
the probability of β4 < 0 is non-negligible. In a Bayesian setting, where the draws from the
posterior for β4 are draws from its marginal (with respect to the other parameters) distribution
given the data, this probability can be approximated simply by calculating the proportion of
draws that satisfy β4 < 0.

This approach of evaluating the plausibility of statements that come from economic the-
ory can be extended when the statement involves functions of a single or multiple parameters.
Continuing with the example of the Cobb-Douglas aggregate production function, the long-run
properties of economic growth models depend crucially on whether this function exhibits de-
creasing, constant or increasing returns to scale. In the Cobb-Douglas function returns to scale
are constant if the sum of β2 and β3 is equal to one, decreasing if the sum is smaller than one
and increasing otherwise. The probability of the production function exhibiting, for example,

3Recall that β4 came from the assumption that the logarithm of the productivity index in a Cobb-Douglas
production function can be expressed as a linear function of time.
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increasing returns to scale can be approximated by calculating the proportion of draws from
the posterior that satisfy β2 + β3 > 1. This is because the draws from the posterior for β2 and
β3 are draws from the joint distribution of these two parameters, conditional on the data and
marginally with respect to to the remaining parameters. Furthermore, the plausibility of the
joined statement “the production function exhibits increasing returns to scale and technologi-

cal progress” can be evaluated by the proportion of draws from the posterior distribution that
satisfy both β2 + β3 > 1 and β4 > 0, at the same time.

We can now generalize the preceding discussion. Consider a generic linear regression model:

yi = x′
iβ + εi (2.29)

and q statements or hypotheses about the values of functions of the model’s parameters. These
q statements can be expressed in the form g (β) > r, where g is a vector-valued function and
r a q×1 vector.4 Then the plausibility of all q statements taken together can be evaluated by
calculating the proportion of draws from the posterior that satisfy all q of them at the same
time. We note in passing that this simple approach does not extend well to cases where the
restrictions are expressed in the form of equalities. This is because β is a continuous random
variable and the probability of a function of it being exactly equal to a given vector, r, is zero.
An obvious workaround is to calculate the probability of g (β) being within a certain small
interval around r, but we will describe below a procedure for evaluating the plausibility of
statements that involve equalities, based on the general Bayesian model-comparison approach.

Sometimes, the researcher may want to impose parametric restrictions on a model, rather
than simply evaluating their plausibility. This may be done so that the parameter estimates
are consistent with theory or to introduce prior knowledge about the values of the parameters,
given that the validity of the theory is not to be questioned. Imposing restrictions of a general
form may become quite demanding, but the process simplifies considerably if these restrictions
are linear in the parameters:

Rβ = r (2.30)

where R is a q×K matrix and Rβ assumes the role of the possibly non-linear function g (β),
defined above. If this system of equations has multiple solutions, then the dimensionality of
β can be reduced by expressing one or more of the βs as functions of the remaining and of
the coefficients in R and r. This leads to a smaller number of parameters to be estimated and
the restrictions can be imposed on the model by appropriately transforming the data. This
approach, however, is case specific and the discussion cannot proceed any further without a
concrete case.

The Bayesian approach provides a more direct and natural device for imposing this type of
restrictions, through the prior density of the parameters. Taking this route starts from treating
the restrictions as stochastic, rather than deterministic. An intuitive way to think about this
is to consider the prior density of β. If the uncertainty about the value of β is reflected in this
prior density, then β is a random vector and, therefore, r should also be treated as random.
However, economic theory provides values for r and to impose the restrictions through the
prior we should get the prior density of β given r. Thus, apart from accommodating the
restrictions, p(β|r) also expresses how forcefully we want to impose them or, in other words
how far away are we willing to allow β to be from satisfying the restrictions. Defining the priors
such that they reflect prior beliefs on the validity of the restrictions may become complex if
many interrelated restrictions are to be imposed, but a sequential definition of priors and an
application of Bayes’ rule can achieve this in two simple steps. The first one is to define a
prior for β that does not impose the restrictions or, to put it differently, a prior that disregards
economic theory:

p(β) =
|P|1/2

(2π)
K/2

exp

{

−1

2
(β −m)′ P (β −m)

}

(2.31)

4In the previous example g (β) and r are:

g (β) =

[

β1 + β2

β4

]

and r =

[

1
0

]

respectively.



44 CHAPTER 2. THE LINEAR MODEL

The second step imposes a distribution on r|β:

p(r|β) = |Ξ|1/2

(2π)q/2
exp

{

−1

2
(r−Rβ)

′
Ξ (r−Rβ)

}

(2.32)

This density suggests, first of all, that the value of r is random and there is no guarantee
that the restrictions will be satisfied exactly. However, they should be satisfied in expectation
(the expected value of r is Rβ) and the variability of r around its mean can be controlled by
the value of the precision matrix, Ξ. For example, expressing strong prior beliefs that Rβ

should be close to r can be achieved by setting Ξ equal to a diagonal matrix with large values
on the diagonal. Alternatively, a diagonal Ξ with small values on the diagonal would allow
r to be far from what economic theory prescribes. Thus, Ξ can be set such that the model
moves continuously from not imposing the restrictions at all to imposing them with greater
conviction.

Applying Bayes’ theorem on the last two densities leads to:

p(β|r) = p(r|β)× p(β)

p(r)
=

|P̌|1/2

(2π)
K/2

exp

{

−1

2
(β − m̌)′ P̌ (β − m̌)

}

(2.33)

where P̌ = (R′ΞR+P) and m̌ = (R′ΞR+P)
−1

(R′Ξr+Pm), while the procedure for
obtaining this result is almost identical to the the one used for getting the full conditional for
β in Section 2.4. The resulting density incorporates the restrictions and can be used as the
“adjusted” or “updated” prior for β in the linear regression model.

� Example 2.2 Aggregate Production Function (Continued)
Consider again the data from the Penn World Table and assume that the aggregate production function
takes the Cobb-Douglas form:

logYi = β1 + β2 logKi + β3 log Li + β4trendi + εi

We estimated this model in the previous part of this example. Using the results from this model we
approximate the probability of β4 being positive (technological progress) as:

Prob(β4 > 0|y) ≈ 0.9908

A Cobb-Douglas production function exhibits increasing returns to scale if β2 + β3 > 1. Using the
results from the estimated model, the probability of increasing returns to scale is approximated as:

Prob(β2 + β3 > 1|y) ≈ 1

That is, given the data, we are almost certain that the production technology is characterized by
increasing returns to scale. Finally, we can evaluate the plausibility of both statements at the same
time by approximating Prob(β4 > 0, β2 + β3 > 1|y). The following table presents the results for this
compound statement as presented by BayES. From this table we see that BayES approximates the
probability of each statement being true separately, before calculating the probability of the compound
statement to 0.9908. In this example the probability of the compound statement being true is equal
to the probability of the first statement only because the second statement is almost always true.

Condition Cases Successes Probability

β4 > 0 20000 19816 0.9908
β2 + β3 > 1 20000 20000 1
Overall 20000 19816 0.9908

Although the results above indicate that the technology is characterized by increasing returns to
scale, we can still impose the restriction of constant returns to scale (β1 + β2 = 1); we are simply
restricting the data to conform to a model/data-generating process that they seem not to support.
The following table presents the results obtained by using BayES’ lm() function while imposing this
restriction with great conviction: we set the Ξ matrix that defines the precision of the right-hand side
of the constrain β1+β2 = r equal to 108. The output elasticities with respect to the two inputs change
slightly when compared to the unrestricted model we estimated in the previous part of this example
and now sum up to one. Notice also that the standard deviation of the error term has increased
because we are now forcing the data to conform to a specific theory/data-generating process.

http://www.rug.nl/ggdc/productivity/pwt/
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Mean Median Sd.dev. 5% 95%

constant 4.08074 4.08425 0.256233 3.65764 4.49684
logK 0.516158 0.515854 0.0222997 0.480052 0.553002
logL 0.483844 0.484147 0.0222999 0.447011 0.519957
trend 0.00251447 0.00251857 0.000482089 0.00171773 0.0032989

tau 67.927 67.8723 3.68118 61.934 74.1212
sigma e 0.121467 0.121383 0.00329981 0.116153 0.127071

The following box contains code that can be used to reproduce the results presented in this
example.

✞ ☎
// import the data and transform the variables

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

Data.constant = 1; Data.logY = log(Data.Y);

Data.logK = log(Data.K); Data.logL = log(Data.L);

// run the unconstrained Cobb-Douglas model

unconCD = lm(logY ∼ constant logK logL trend);

// calculate the probability of beta4>0

test( unconCD.trend > 0 );

// calculate the probability of beta2+beta3>1

test( unconCD.logK + unconCD.logL > 1 );

// calculate the probability of (beta4>0) AND (beta2+beta3>1)

test( unconCD.trend > 0,

unconCD.logK + unconCD.logL > 1.0 );

// estimate the constrained model (beta1+beta2=1)

conCD = lm(logY ∼ constant logK logL trend,

"constraints" = {logK+logL=1}, "Xi" = 1e9);
✝ ✆

2.6.2 Model Comparison in the Linear Regression Model

Model comparison in the context of the linear regression model is a direct application of the
general principles presented in subsection 1.3.4. To simplify the discussion we will consider the
comparison of only two models, but extension to multiple models is straightforward. Suppose
that we have the following two candidate models, which are derived from alternative economic
theories:

Model 0: yi = x′
iβ0 + εi, εi ∼ N

(

0, 1
τ0

)

Model 1: yi = z′iβ1 + ξi, ξi ∼ N
(

0, 1
τ1

) (2.34)

along with their priors, p0 (β0, τ0) and p1 (β1, τ1). We will keep using Normal and Gamma
priors for the two βs and two τs, respectively, but the prior hyperparameters may differ between
the two models. The dependent variable is the same in both models, but there is no restriction
on the independent variables: x could contain a subset of the variables in z or the other way
around, the sets of independent variables in the two vectors could overlap only partially, with
some of the variables in x not appearing in z and some of the variables in z not appearing in x,
or the sets of independent variables could be disjoint or overlap completely. In the latter case of
the two models having exactly the same independent variables, the only difference between the
models will be in the prior hyperparameters. For example, one model may use hyperparameters
that stochastically restrict the values of some of its βs, as we saw in the preceding subsection,
while the other model does not impose these restrictions. Model comparison here provides an
indirect way of evaluating the plausibility of the restrictions.

As we did in subsection 1.3.4, we define M as a discrete random variable which can assume
two values, 0 or 1, and which indicates which of the two models better describes how the
data on the dependent variable are generated in the population. Setting Prob(M=0) and
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Prob(M=1) to values that express prior beliefs on the relative suitability of each model to
describe the data-generating process, the posterior odds ratio is:

Prob(M=0|y)
Prob(M=1|y) =

m (y|M=0)

m (y|M=1)
· Prob(M=0)

Prob(M=1)
(2.35)

The only thing left to do is to calculate the ratio of the two marginal likelihoods that define
the Bayes factor . In the linear regression model these are given by:

m (y|M =j) =

∞
∫

0

∞
∫

−∞

pj
(

y|βj , τj , •
)

· pj
(

βj , τj
)

dβjdτj (2.36)

where pj
(

y|βj , τj , •
)

and pj
(

βj , τj
)

are the likelihood function and the prior, respectively,
for model j and for j = 0, 1. These integrals cannot be calculated analytically even for such
simple models as the ones we are considering here. There exist, however, a few approaches to
approximate them:

� Gelfand & Dey (1994) use an identity that expresses the reciprocal of the marginal likeli-
hood as an expectation of a ratio that involves known quantities and a probability density
function, appropriately chosen by the researcher. The expectation is then approximated
by simulation and using the draws from the posterior which were generated during esti-
mation, in a way that resembles importance sampling. This approach is very general and
can be directly applied to the linear regression model. Numerical instability issues may
arise, however, in models with missing data5 or if the free density is not chosen carefully.

� Lewis & Raftery (1997) propose using the Laplace approximation to the integrals that
appear in the definition of the marginal likelihood. This method requires derivation of
the mode of the function inside the integral. But if the posterior joint density of β

and τ is approximately Normal, its mode will coincide with the mean and the posterior
expected values of the parameters, along with their posterior covariance matrix, can be
used for the approximation. The precision of this approximation, however, reduces if the
posterior density is far from the Normal.

� Chib (1995) develops a technique that can be used to approximate the integral using
additional simulations in a reduced Gibbs sampler. This approach requires a point for β
and τ at which the posterior density is non-zero, but it does not have to be the mode of
the posterior. Chib’s approach works only when the full conditionals are known exactly
(they have no missing constants of proportionality), but Chib & Jeliazkov (2001) extend
the method to Metropolis-Hastings within Gibbs samplers.

� Example 2.2 Aggregate Production Function (Continued)
Using once again the data from the Penn World Table we will now compare the following two models
for the aggregate production function:

logYi = β1 + β2 logKi + β3 log Li + β4trendi + εi

and:

logYi = β1 + β2 logKi + β3 log Li + β4trendi

+ β5 logKi logKi + β6 logKi log Li + β7 log Li log Li

+ β8trendi logKi + β9trendi log Li + εi

The Cobb-Douglas model can be obtained from the translog model by restricting β5 to β9 in the latter
to zero. Therefore, comparing the two models is equivalent to testing a set of five linear restrictions.
Although The Cobb-Douglas model is nested withing the translog, this is not required for model
comparison, in general.

The following two tables present the results obtained after estimating the two models, using
the Lewis and Raftery and the Chib and Jeliazkov approximations to the logarithm of the marginal
likelihood, respectively. Both the Cobb-Douglas and translog models were estimated using the vague
default priors defined in BayES.

5We will encounter models with missing or latent data in following chapters.

http://www.rug.nl/ggdc/productivity/pwt/
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Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

CobbDouglas 442.663 Lewis & Raftery 0.5 0.834778
Translog 441.043 Lewis & Raftery 0.5 0.165222

Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

CobbDouglas 442.671 Chib & Jeliazkov 0.5 0.833955
Translog 441.057 Chib & Jeliazkov 0.5 0.166045

The results do not change substantially when using the two alternative approximations: with equal
prior model probabilities, the posterior model probability is considerably higher for the Cobb-Douglas
model, although if we restrict attention only to these two models, the probability that the translog
model expresses the “true” data-generating process is non-negligible (≈ 16.5%).

The finding of the Cobb-Douglas model being preferred by the data in this application is driven
mostly by the relatively little non-data information provided during estimation through the priors.
Because the translog model nests the Cobb-Douglas, it should be able to accurately mimic the data-
generating process, even if this process were the one described by the Cobb-Douglas specification.
However, the translog model contains many more parameters that need to be estimated than the
Cobb-Douglas and the lack of prior information on the values of these extra parameters penalize this
large model heavily. With more informative priors for the parameters associated with the interaction
terms of the translog specification, this model could turn out as being preferred by the data over the
Cobb-Douglas.

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data and transform the variables

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

Data.constant = 1; Data.logY = log(Data.Y);

Data.logK = log(Data.K); Data.logL = log(Data.L);

// normalize inputs and create interaction terms

Data.logK = Data.logK - mean(Data.logK);

Data.logL = Data.logL - mean(Data.logL);

Data.logKlogK = Data.logK.*Data.logK;

Data.logKlogL = Data.logK.*Data.logL;

Data.logLlogL = Data.logL.*Data.logL;

Data.tlogK = Data.trend.*Data.logK;

Data.tlogL = Data.trend.*Data.logL;

// run the Cobb-Douglas model and request the calculation of the Chib and

// Jeliazkov approximation to the logarithm of the marginal likelihood

CobbDouglas = lm(logY ∼ constant logK logL trend,

"logML_CJ" = true);

// run the translog model and request the calculation of the Chib and

// Jeliazkov approximation to the logarithm of the marginal likelihood

Translog = lm(logY ∼ constant logK logL trend

logKlogK logKlogL logLlogL tlogK tlogL,

"logML_CJ" = true);

// compare the two models using the Lewis-Raftery approximation

pmp( { CobbDouglas, Translog } );

// compare the two models using the Chib-Jeliazkov approximation

pmp( { CobbDouglas, Translog }, "logML_CJ"=true );
✝ ✆

2.6.3 Predicting the Values of the Dependent Variable

A linear regression model of the general form yi = x′
iβ + εi, along with the distributional

assumption εi ∼ N
(

0, 1
τ

)

, expresses the assumptions on the data-generating process for the
dependent variable in the population. This is done without reference to the data and the role
of the data in applied research is to estimate the parameters of the model and evaluate the
plausibility of statements that involve the values of these parameters. However, because the
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model applies to the population, it is possible to use it to make stochastic statements about
the values of the dependent variable, conditional on values for the independent variables which
are not observed in the data.

To formalize this point, let x∗ be a K×1 vector of values for the independent variables,
chosen by the researcher, and let y∗ be a random variable that is generated by the assumed
data-generating process. From the properties of the model we get y∗|β, τ ∼ N

(

x′
∗β,

1
τ

)

and
if the values of the parameters were known, we could use the Normal distribution to obtain
the most likely value of y∗ or to calculate the probability of it being within a certain interval.
For doing so, one could use the most likely values of β and τ or their posterior expected
values and plug them into the formulas for the mean and variance of y∗. Such an approach,
however, would ignore the uncertainty associated with the values of the parameters. Explicitly
accounting for this uncertainty requires integrating out β and τ from the joint density of y∗
and the parameters, conditional on the observed data:

p(y∗|x∗,y) =

∞
∫

0

∞
∫

−∞

p(y∗,β, τ |x∗,y) dβdτ =

∞
∫

0

∞
∫

−∞

p(y∗|β, τ,x∗,y) π (β, τ |y) dβdτ (2.37)

where π (β, τ |y) is the posterior density of the parameters and p(y∗|β, τ,x∗,y) is the proba-
bility density function of y∗, conditional on the values of the parameters:

p(y∗|β, τ,x∗,y) =
τ1/2

(2π)
1/2

exp
{

−τ

2
(y∗ − x′

∗β)
2
}

(2.38)

Notice that, once we condition on β and τ , the density of y∗ does not depend on the observed
data, y, because we have assumed that the value of the dependent variable for each potential
observation is independent of the values of yi for other potential observations. This is another
way of seeing that the role of the observed data in the model is to provide information on the
values of the parameters. Once this information has been extracted from the data and cast
into information about β and τ , the observed data have nothing more to to say in relation to
the value of y∗.

Equation (2.37) is the posterior predictive density in the context of the linear regression
model. The integral cannot be evaluated analytically when independent Normal and Gamma
priors are used for β and τ , but the moments of y∗ or the probability of it being within a certain
interval can be expressed as expectations and approximated by simulation. For example, the
expected value of y∗ is:

E (y∗|x∗,y) =

∞
∫

−∞

y∗ · p(y∗|x∗,y) dy∗ (2.39)

Because y∗|β, τ,x∗ ∼ N
(

x′
∗β,

1
τ

)

, samples from p(y∗|x∗,y) can be obtained by using the G
retained draws from the posterior for β and τ and then generating R draws for y∗ from a
Normal distribution, given the values from the g-th iteration of the Gibbs sampler. Given

Q = G·R such draws, y
(1)
∗ , y

(2)
∗ , . . . y

(Q)
∗ , the expectation can be approximated as:

E (y∗|x∗,y) ≈
1

Q

Q
∑

q=1

y
(q)
∗ (2.40)

Approximating other moments or functions of y∗ involves simply changing the way y∗ enters
the summation in the expression above. For example, the variance of y∗ can be approximated
using the same Q draws from the posterior predictive density and the formula:

V (y∗|x∗,y) ≈
1

Q

Q
∑

q=1

(

y
(q)
∗ − ȳ∗

)2

(2.41)
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while the probability of y∗ being within the interval [c1, c2] can be approximated as:

Prob(c1 ≤ y∗ ≤ c2|x∗,y) ≈
1

Q

Q
∑

q=1

1

(

c1 ≤ y
(q)
∗ ≤ c2

)

(2.42)

where 1(•) is the indicator function.

2.7 Synopsis

This chapter introduced and covered the linear regression model in great detail. The error term
in the model was assumed, throughout, to follow a Normal distribution with mean zero and
precision parameter, τ , common to all potential observations. This assumption can be relaxed
in various ways and this will be done in following chapters. We used a Normal prior for the slope
parameters of the model and an independent Gamma prior for the precision parameter and
showed that these priors are conjugate. This chapter was slightly more extensive than the ones
that will follow for two reasons: (i) some concepts, like marginal effects and the distinction
between the population and the sample, were encountered and discussed for the first time,
and (ii) the Bayesian way of comparing models, evaluating the plausibility of statements that
involve the model’s parameters, as well as predicting the values of the dependent variable,
were also discussed in the context of the linear model, so as to provide a concrete econometric
example.
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Chapter 3

Seemingly Unrelated Regressions

3.1 Overview

This chapter covers the Seemingly Unrelated Regressions (SUR) model, first introduced by
Zellner (1962), who also coined the term for it. The SUR model is a direct extension of the linear
regression model to the case where multiple dependent variables are modeled simultaneously.
It is useful in its own right, as it provides additional information in relation to running multiple
linear regressions separately, as well as a means of testing statements that involve restrictions
of parameters which appear in different equations. In a Bayesian setting the SUR model also
emerges as an intermediate step in estimating more complex models, such as multiple discrete
response models.

The chapter starts with the setup of the SUR model, discussing its assumptions and the
interpretation of its parameters. After presentation of the likelihood function, priors and full
conditionals, a separate section is dedicated to imposing linear restrictions on the parameters
of the model.

3.2 The System Approach to Linear Regression

In analogy to the linear regression model, economic theory may posit causal relationships
among multiple independent and multiple response variables. The general form of such re-
lationships can be expressed mathematically as y = f (x), where y is a vector of dependent
variables, x is a vector of independent variables and f (·) is now a vector-valued function. The
SUR model assumes that this function is linear in unknown parameters, as well as stochastic.
In a model with M dependent variables, the SUR model expresses these relationships for a
potential observation, i, as:

y1i = x′
1iβ1 + ε1i

y2i = x′
2iβ2 + ε2i

...
...

...
yMi = x′

MiβM + εMi

(3.1)

where ymi is the m-th dependent variable and it is assumed to be determined as the inner
product of a Km×1 vector of independent variables, xmi, and a Km×1 vector of parameters,
βm, plus an error term, εmi, and this interpretation holds for m = 1, 2, . . . ,M . Some or all
of the independent variables may appear in multiple equations or each equation could have
entirely different independent variables.

51
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The unit of analysis in such a model could be a household, a firm, a country, etc., and
this is what i is used as an index for. All M equations apply to the same unit and the only
thing that changes from one equation to the other is the dependent variable being modeled
and, possibly, the independent variables. A few typical examples where the SUR model can
be applied are the following:

� consumer theory: the unit of analysis is a household or individual consumer and the
dependent variables are the shares of expenditures on M categories of goods in total
household expenditure. The independent variables in this context would be the prices
or price indexes of the M categories of goods, as well as household income and socio-
demographic characteristics.

� production theory: the unit of analysis is a firm and the dependent variables are the
shares of costs from employing, renting or using different factors of production in total
cost. The independent variables in this context would be the prices of the M factors of
production, the amount of produced output and any other relevant firm characteristics.

� student performance: the unit of analysis is a student and the dependent variables are the
scores obtained in different forms of assessment or different courses. The independent
variables in this context would be a measure of the effort that the student put into
studying for the assessment/course, the student’s prior knowledge of the subject and any
other relevant student characteristics.

One important thing to keep in mind is that in all applications of the SUR model a variable
that appears as a dependent variable in one equation cannot be included in the set of inde-
pendent variables in any other equation. That is, the independent variables are assumed to be
determining the values of dependent variables simultaneously and that there is no effect from
one dependent to another, once we condition on the xs.

The expression in (3.1) looks like a set of M linear regressions, stacked one under the
other and, when viewing the model as such, a valid approach for estimating the M vectors of
parameters would be to run M separate linear regression models. However, these seemingly
unrelated regressions may be connected with each other, depending on the assumptions we
impose on the error terms. If we assume that the εis are independent from each other across
equations, then the regressions are indeed unrelated. If, on the other hand, we allow the error
terms to be dependent, then the regressions are related and joint estimation can take advantage
of the information contained in these error terms.

In general, we will assume that the M×1 vector of εs follows a multivariate Normal distri-
bution, with expected value equal to a vector of zeros and precision matrix (inverse covariance
matrix) Ω. The model in which the error terms are independent across equations can be
obtained by restricting the precision matrix in the general model to be diagonal. By the
properties of the multivariate Normal distribution one can deduce that, even when Ω is not
diagonal, the marginal distribution of each εmi is still Normal. Therefore, running M separate
linear regressions does not contradict any of the assumptions of the SUR model. Why then
should we consider joint estimation of all M equations? The answer is because, by imposing
additional structure on the model, we can extract more information from the data. Intuitively,
if the error terms associated with two equations in the system are correlated, then knowing
the value of one can help us better predict the value of the other. Of course, we will never
know the values of the error terms in practice, but modeling them using their joint density
rather than their marginal densities can provide additional information. This information is
then translated into higher precision in the estimation of the βs.

It may appear as if one has nothing to lose by estimating the M equations in a system.
After all, if the error terms are independent, then the off-diagonal elements of Ω should turn
out to be zero or close to zeros and we are back to the case of running M linear regressions
separately. There are two ways in which this argument may fail. First, if the error terms
are indeed independent, by allowing them to be dependent when estimating a system we are
over-parameterizing the model by having to estimate the off-diagonal elements of the precision
matrix. Imposing a correct restriction on the data would lead to more precise estimates of
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the βs than allowing Ω to be non-diagonal. Second, misspecification of a single equation in
the system, for example by missing a relevant variable, will be transmitted to all equations
through the error terms, even if all other equations are correctly specified. As it is most often
the case in applied econometrics, by imposing additional structure on the data, one runs the
risk of imposing invalid assumptions on the data-generating process.

Just like the single-equation linear regression model, the SUR model can be given a con-
ditional expectation interpretation: E (ymi|xmi) = x′

miβm for m = 1, 2, . . . ,M . Similarly,
nothing changes with respect to meaning of the βs in the SUR model: if βmk is the coefficient
associated with the k-th independent variable in the m-th equation of the system, then this
is to be interpreted as the change in the expected value of ym caused by a small change in
the associated independent variable. It is possible for some of the independent variables to
enter the model squared or in interactions with other independent variables. It is also possible
for the statistical model to be specified in monotonic transformations, such as the logarithmic
function, of the original variables that are implied by economic theory. In these cases the
discussion in Section 2.5 around marginal effects extends to the SUR model, with the only
difference being that now one has to keep track of the dependent variable that the marginal
effect applies to.

The interpretation of Ω, on the other hand, requires some attention. It may be more
natural to start by interpreting the variance matrix of the error terms, Ω−1, rather than Ω
itself. The diagonal of this variance matrix stores the variances of each of the error terms,
marginally with respect to the remaining error terms. The off-diagonal elements of Ω−1 are
the pairwise covariances of the error terms, again marginally with respect to the remaining εs.
Mathematically:

Ω−1 =











V (ε1i) Cov (ε1i, ε2i) · · · Cov (ε1i, εMi)
Cov (ε2i, ε1i) V (ε2i) . . . Cov (ε2i, εMi)

...
...

. . .
...

Cov (εMi, ε1i) Cov (εMi, ε2i) · · · V (εMi)











(3.2)

where all variances and covariances are taken marginally with respect to the error terms that
do not appear as their arguments. If Ω−1 is diagonal, all covariances are zero and the error
terms are uncorrelated. Given the assumption of joint Normality of the error terms, if the
error terms are uncorrelated, then they are also independent. On the other hand, if any of the
off-diagonal elements are non-zero, then the associated error terms are not independent.

However, the model, as it is presented here, is parameterized in terms of Ω, not its inverse.
It turns out that the precision matrix also has an intuitive interpretation, albeit not as direct.
To start with, Ω−1 will be diagonal if and only if Ω is diagonal. Therefore, and given that the
εs jointly follow a multivariate Normal distribution, whether the error terms across equations
are independent or not can be inferred directly from Ω. The off-diagonal elements of the
precision matrix can be used to obtain the partial correlations of the error terms, conditional
on the remaining εs. In particular, the partial correlation coefficient of εmi and εℓi can be
obtained as − ωmℓ√

ωmm·ωℓℓ
, where ωmℓ is the element of Ω in row m, column ℓ.

Before closing this section we introduce an equivalent and more compact representation of
the model in (3.1), which will be very useful in expressing the likelihood function, priors and
full conditionals. The SUR model can be written as:

yi = Xiβ + εi, εi ∼ N
(

0,Ω−1
)

(3.3)

where:

yi
M×1

=











y1i
y2i
...

yMi











, Xi
M×K

=











x′
1i 0 . . . 0
0 x′

2i . . . 0
...

...
. . .

...
0 0 . . . x′

Mi











, β
K×1

=











β1

β2
...

βM











and εi
M×1

=











ε1i
ε2i
...

εMi











and K is the total number of β parameters that appear across all equations: K=
∑M

m=1 Km.
From this representation it is easy to see that the SUR model expresses the relationship among
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M dependent variables and K independent variables of the general form y = f (x) as a linear
function of the parameters and appends to it a Normally-distributed vector of error terms.

3.3 Likelihood, Priors and Full Conditionals

Given the assumption that the error term follows a multivariate Normal distribution, the
density of yi is also multivariate Normal, with mean Xiβ and precision matrix Ω. Adding to
this an independence assumption on the error terms across observations, the likelihood of the
SUR model with N observations is:

p({yi} |β,Ω) =

N
∏

i=1

|Ω|1/2

(2π)
M/2

exp

{

−1

2
(yi−Xiβ)

′
Ω (yi−Xiβ)

}

=
|Ω|N/2

(2π)
MN/2

exp

{

−1

2

N
∑

i=1

(yi−Xiβ)
′
Ω (yi−Xiβ)

}
(3.4)

The parameters to be estimated in the model are the K×1 vector β and the M×M matrix
Ω. A multivariate Normal prior for β appears as the natural choice and it turns out to be
conjugate. Ω is a precision matrix and it needs to be restricted by the prior to be symmetric
and positive definite. Recall that in single-equation models we used a Gamma prior for the
precision parameter, which restricted the value of the parameter to be positive and it also
turned out to be conjugate. A natural choice for the prior of the precision matrix is the
generalization of the Gamma distribution to multiple dimensions. The Wishart distribution
constitutes such a generalization and it represents a distribution over symmetric and non-
negative-definite matrices. Its probability density function is:

p(Ω) = |Ω|
n−M−1

2 |V−1|n/2

2nM/2ΓM(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

(3.5)

where n is the degrees-of-freedom parameter, V is the scale matrix and ΓM (·) is the M -
dimensional Gamma function. In the context of Bayesian inference, n and V will be the
prior hyperparameters. An important point to keep in mind is that, for the density of the
Wishart distribution to integrate to unity, n needs to be greater than or equal to M . This
becomes particularly relevant if model comparison is to be performed after the estimation
of the model, because improper priors invalidate any procedures used for approximating the
marginal likelihood.

The expected value of a Wishart-distributed random matrix, Ω, is nV and the variance of
the element in row m, column ℓ of Ω, marginally with respect to the remaining elements, is
n
(

v2mℓ + vmm ·vℓℓ
)

, where vmℓ is the element in row m, column ℓ of V. For a given value of n
and using the expected-value formula only, a reasonable choice for V would be 1

nQ, where Q is
a prior guess on the value of Ω. The choice of n and V, however, also affect the variance of Ω.
If we restrict attention to values of the hyperparameters that lead to proper priors and given
that V is set to 1

nQ, the least informative prior for Ω is obtained by setting n equal to the
dimension of the problem. This is because, if V = 1

nQ, the marginal variances are maximized
for large values of V (therefore, small values of n), since the values of V enter the formula for
the marginal variances squared, but n does not.

The posterior is, as always, proportional to the likelihood times the prior. The full condi-
tionals for β and Ω are obtained by simplifying the posterior and transforming the resulting
expressions so that they resemble the probability density function of known distributions. The
procedure for deriving the full conditional of β is similar to what was done for the linear
regression model. Derivation of the full conditional of Ω requires some transformations that
involve the properties of the trace operator, but the process is rather straightforward. The
interested reader is directed to Greenberg (2013, pp.136-137) for a step-by-step presentation
of the process. The important thing for our purposes is that the Normal and Wishart priors
are conjugate in the context of the SUR model and this simplifies sampling from the posterior
considerably. These results are presented below in the form of a theorem.
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THEOREM 3.1: Full Conditionals for the SUR Model
In the SUR model with Normally distributed error and M equations:

yi = Xiβ + εi, εi ∼ N
(

0,Ω−1
)

and with a Normal prior for β and a Wishart prior for Ω:

p(β) =
|P|1/2

(2π)K/2
exp

{

−1

2
(β −m)

′
P (β −m)

}

and:

p(Ω) = |Ω|
n−M−1

2 |V−1|n/2

2nM/2ΓM(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

the full conditionals of β and Ω are, respectively, Normal and Wishart:

π (β|•) = |P̃|1/2

(2π)
K/2

exp

{

−1

2
(β − m̃)

′
P̃ (β − m̃)

}

and:

π (Ω|•) = |Ω| ñ−M−1
2 |Ṽ|− ñ

2

2
ñM
2 ΓM

(

ñ
2

) exp

{

−1

2
tr
(

Ṽ−1Ω
)

}

where:

� P̃ =
N
∑

i=1

X′
iΩXi +P

� m̃ =

(

N
∑

i=1

X′
iΩXi +P

)−1( N
∑

i=1

X′
iΩyi +Pm

)

� ñ = N + n

� Ṽ−1 =
N
∑

i=1

(yi −Xiβ) (yi −Xiβ)
′ +V−1

Using these formulas we can discuss a well-known result in the frequentist treatment of the
SUR model: if all equations in the system have the same independent variables, then running
a SUR model results in the same point estimate for β as running the M linear regressions,
equation by equation. This result does not hold exactly when the model is estimated using
Bayesian methods because the M equations are now connected through the priors, as well
as through the likelihood. However, as the role of the prior precision matrix in the formulas
diminishes, either because it is set close to a matrix of zeros or because there are many ob-
servations available, the posterior mean of β from the SUR model converges to the posterior
mean obtained by the separate regressions. To see how this works, it is convenient to set P
exactly equal to a matrix of zeros, before considering what happens when the prior for β is
proper.

In the case where all equations contain the same independent variables in a k×1 vector
xi, Xi can be written as IM ⊗ x′

i, where IM is the M×M identity matrix and ⊗ denotes the
Kronecker product operator. With this expression and using the properties of the Kronecker
product, X′

iΩXi becomes Ω⊗ xix
′
i and X′

iΩyi becomes (Ω⊗ Ik) (IM ⊗ xi)yi. With P = 0,
the expression for m̃ can be written as:

m̃ =

(

Ω⊗
N
∑

i=1

xix
′
i

)−1(

(Ω⊗ Ik)

N
∑

i=1

(IM ⊗ xi)yi

)

=



IM ⊗
(

N
∑

i=1

xix
′
i

)−1




N
∑

i=1

(IM ⊗ xi)yi

(3.6)
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Carrying-out the multiplications in this expression leads to:

m̃ =



















(

∑N
i=1 xix

′
i

)−1
∑N

i=1 xiy1i
(

∑N
i=1 xix

′
i

)−1
∑N

i=1 xiy2i
...

(

∑N
i=1 xix

′
i

)−1
∑N

i=1 xiyMi



















(3.7)

which would be the posterior mean of β if one had used zero precision matrices to run the M
separate linear regressions and stacked these means one under the other. However, when P
is different from zero the second equality in (3.6) does not hold. Nevertheless, if P is not too
restrictive, the two sums over i that appear in the expression for m̃ will become larger as the
sample size increases and the relationship will hold approximately.

� Example 3.1 Secondary School Student Performance
In this example we will consider part of the dataset used by Cortez & Silva (2008). The dataset
contains information on 382 secondary school students in Portugal regarding their performance in two
subjects, mathematics and Portuguese, as well as student characteristics and student effort per subject.
The variables in the dataset are:

mGrade, pGrade : final grade obtained by the student in mathematics and Portuguese, re-
spectively, on a 0-20 scale

age : age of the student in years
female : dummy variable, 1 if female

mStudy, pStudy : amount of time spent studying for mathematics and Portuguese, respec-
tively, coded such that higher values correspond to greater effort

mFails, pFails : number of past class failures for mathematics and Portuguese, respectively
mPaid, pPaid : dummy variable, 1 if the student took extra paid classes in mathematics

and Portuguese, respectively
mAbsent, pAbsent : number of absences from mathematics and Portuguese, respectively

The unit of analysis is the student and our objective is to estimate the effects of student behavior
in relation to each subject and overall student characteristics on the grades obtained. We will consider
the following two-equation model:

mGradei = β11 + β12agei + β13femalei

+ β14mStudyi + β15mFailsi + β16mPaidi + β17mAbsenti + ε1i

pGradei = β21 + β22agei + β23femalei

+ β24pStudyi + β25pFailsi + β26pPaidi + β27pAbsenti + ε2i

The justification for using a SUR model in this example is that unobserved student characteristics
may affect performance in both subjects. But because these characteristics are not observed, their
effect will be absorbed by the error terms, making them correlated.

We will first run linear regression models for each equation separately before we compare the results
to a SUR model. The following two tables present the results for the final grade in mathematics and
Portuguese, respectively, obtained using BayES’ lm() function.

Mean Median Sd.dev. 5% 95%

constant 20.0977 20.1022 3.14519 14.917 25.242
age -0.567237 -0.566791 0.188453 -0.878842 -0.255136
female -1.56698 -1.56346 0.460623 -2.32726 -0.808936
mStudy 0.381196 0.382687 0.278552 -0.0795295 0.841523
mFails -2.23463 -2.23236 0.310932 -2.75392 -1.71992
mPaid 0.346688 0.346526 0.449231 -0.395886 1.09017
mAbsent 0.0417686 0.0415376 0.0292148 -0.0057057 0.0903097

tau 0.0555064 0.0554304 0.00405269 0.0489308 0.0623213
sigma e 4.25305 4.24743 0.156127 4.00583 4.5208



3.3. LIKELIHOOD, PRIORS AND FULL CONDITIONALS 57

Mean Median Sd.dev. 5% 95%

constant 11.0178 11.0221 2.02516 7.68222 14.3327
age 0.0239318 0.0241175 0.121614 -0.177171 0.225257
female 0.612066 0.613343 0.290043 0.133815 1.0894
pStudy 0.629213 0.629955 0.175254 0.338025 0.91804
pFails -1.59277 -1.59117 0.284222 -2.06223 -1.12235
pPaid -0.923214 -0.925777 0.551325 -1.829 -0.0156636
pAbsent -0.0577804 -0.0580629 0.0286406 -0.104306 -0.0106136

tau 0.140246 0.140058 0.0102397 0.123635 0.157442
sigma e 2.67563 2.67206 0.0982199 2.52029 2.84401

We now run a SUR model on the two equations using BayES’ sur() function. The results are
presented in the following table. This table contains information on the posterior moments and the
associated 90% credible intervals for all 14 parameters that appear in he two equations. One thing to
notice is that the posterior means are not radically different in the SUR and separate linear regression
models. However, standard deviations are mostly smaller for the SUR model and the associated credible
intervals shorter. This is to be expected, given that the SUR model uses additional information on the
correlation of the error terms in the two equations.

Mean Median Sd.dev. 5% 95%

mGrade
constant 20.659 20.6385 3.14089 15.4885 25.8599
age -0.63891 -0.638812 0.188163 -0.950864 -0.328369
female -1.62363 -1.62252 0.46032 -2.38742 -0.872054
mStudy 0.539939 0.539651 0.275466 0.0857904 0.994168
mFails -1.61059 -1.61056 0.29144 -2.09169 -1.13296
mPaid 0.439109 0.43924 0.397885 -0.214804 1.09452
mAbsent 0.0623385 0.0621403 0.026261 0.0194588 0.105657

pGrade
constant 10.7444 10.7409 2.02199 7.43297 14.0455
age 0.0259941 0.0259337 0.121296 -0.171782 0.225373
female 0.582283 0.581926 0.28726 0.111596 1.05765
pStudy 0.68499 0.68342 0.17308 0.400274 0.968099
pFails -1.68026 -1.68083 0.257794 -2.1041 -1.25697
pPaid -0.709772 -0.710286 0.488809 -1.51059 0.108863
pAbsent -0.0199308 -0.0200388 0.0263046 -0.0636699 0.0235892

BayES does not present summaries of the draws from the posterior distribution of Ω, but these
draws are stored in memory and become available for post-estimation analysis if a left-hand side value
is provided when running the SUR model. The posterior mean of Ω is:

E (Ω|•) =

[

0.07169 −0.05440
−0.05440 0.18254

]

and using the draws stored in memory we can calculate the partial correlation coefficient between the
two errors:

E (ρε1,ε2 |•) ≈
1

G

G
∑

g=1

−
ω

(g)
12

√

ω
(g)
11 ω

(g)
22

= 0.47498

Creating a credible interval for ρε1,ε2 or calculating the probability of it being above or below a certain
threshold is straightforward. For example, Prob(ρε1,ε2 |•) > 0.5 can be approximated using BayES’
test() function; for the current example this probability is 0.27525.

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data and create a constant term

Data = webimport("www.bayeconsoft.com/datasets/Students.csv");

Data.constant = 1;

// run the two regressions separately

mathM = lm(mGrade ∼ constant age female mStudy mFails mPaid mAbsent);

portM = lm(pGrade ∼ constant age female pStudy pFails pPaid pAbsent);
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// run the two regressions in a SUR system

jointM = sur( {

mGrade ∼ constant age female mStudy mFails mPaid mAbsent,

pGrade ∼ constant age female pStudy pFails pPaid pAbsent

});

// print the posterior expected value of the precision matrix

print(jointM.Omega);

// calculate the partial correlation coefficient for the error terms

draws_rho = -jointM.Omega_2_1 ./ sqrt(jointM.Omega_1_1 .* jointM.Omega_2_2);

print(mean(draws_rho));

// test whether the partial correlation coefficient is greater than 0.5

test(draws_rho>0.50);
✝ ✆

3.4 Cross-Equation Restrictions and the SUR Model

Apart from providing general associations among causal and response variables, economic the-
ory often suggests restrictions on the ways these variables may interact with each other. If
these theoretical restrictions can be expressed as constraints on the values of a model’s param-
eters, then they can be imposed on the model and their validity can be examined using the
procedures discussed in Section 2.6. In the case of models with multiple response variables the
constraints may involve parameters that appear in different equations and the SUR model can
be used as a means of imposing the constraints during estimation. It is difficult to proceed
with the discussion at such an abstract level and without reference to particular constrains.
Therefore, we will discuss in detail two examples, one from consumer theory and one from pro-
duction theory, before returning to the statistical approach of imposing restrictions suggested
by economic theory.

3.4.1 Demand Systems

Deaton & Muellbauer (1980) propose a system of demand equations for M goods or categories
of goods, which satisfies many of the properties implied by consumer theory. Due to this
feature, the system is called the Almost Ideal Demand System. The specification starts from
an unobserved expenditure function of the form:

e (u, p1, p2, . . . , pM ) = α0 +

M
∑

m=1

αm log pm +
1

2

M
∑

m=1

M
∑

ℓ=1

αmℓ log pm log pℓ

+ u ·
(

β0 ·
M
∏

m=1

βmpm

)
(3.8)

where u is the utility level and p1, p2, . . . , pM are the prices of the M goods. The αs and βs
are the parameters of the model, but as it will become apparent in a while, not all of them can
be estimated.

If consumers make their choices based on real rather than nominal prices, then the ex-
penditure function should be homogeneous of degree one in prices: if all prices increase by a
certain proportion, the expenditure required to achieve the same utility level will increase by
that same proportion. This homogeneity restriction implies that the parameters should satisfy
the following restrictions:

�

M
∑

m=1
αm = 1 �

M
∑

m=1
αmℓ = 0 �

M
∑

ℓ=1

αmℓ = 0 �

M
∑

m=1
βm = 0

Finally, due to Young’s theorem, it should hold αmℓ = αℓm for all m and ℓ.
Because the expenditure function contains the unobserved utility level, u, in the right-hand

side, it is impossible to estimate the parameters that appear in (3.8) directly from it. However,
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Shephard’s lemma can be used to obtain the demand functions implied by any expenditure
function:

hm (u, p1, p2, . . . , pM ) =
∂e (u, p1, p2, . . . , pM )

∂pm
, m = 1, 2, . . . ,M (3.9)

where hm (u, p1, p2, . . . , pM ) is the Hicksian demand function for good m. These demand
functions are rather complex, but can be used to derive equations that express the expenditure
on each good as a share in total expenditure:

sm = αm +

M
∑

ℓ=1

αmℓ log pℓ + βm log
E

P
, m = 1, 2, . . . ,M (3.10)

where E is total expenditure in all M goods and P is a price index constructed using the
original prices and the α parameters. Due to this index, the αs enter the model in a non-
linear fashion and, in practice, most applications replace P with an approximation calculated
beforehand and without reference to these parameters. The linearized version of the demand
system becomes:

s1i = α1 +
M
∑

ℓ=1

α1ℓ log pℓi + β1 log
Ei

Pi
+ ε1i

s2i = α2 +
M
∑

ℓ=1

α2ℓ log pℓi + β2 log
Ei

Pi
+ ε2i

...
...

...

sMi = αM +
M
∑

ℓ=1

αMℓ log pℓi + βM log Ei

Pi
+ εMi

(3.11)

where i indexes potential observations (consumers, households, different time periods, etc.).
This system of equations resembles a SUR model and the restrictions mentioned above need to
be imposed such that the linear-homogeneity property of the expenditure function is satisfied.
Furthermore, the M shares appearing as the dependent variables in the system need to sum
to one, by construction. Ensuring that the shares always sum to one requires, on top of the
linear homogeneity constraints, also that the error terms across all equations and for each
potential observation sum to zero. This requirement, however, renters the covariance matrix
of ε singular. To take this issue into account, one out of the M equations is dropped from the
system and the parameters associated with this equation are obtained from the parameters in
the remaining equations and the parametric restrictions. Nevertheless, α0 and β0 that appear
in the original expenditure function cannot be estimated, but this is something to be expected,
given that utility is measured only on an ordinal scale.

3.4.2 Cost Functions and Cost Share Equations

Berndt & Wood (1975) appear to be the first to estimate a cost function along with the cost
share equations implied by Shephard’s lemma. The specification of the model starts from a
translog cost function:

logCi = β0 +

M
∑

m=1

βm logwmi +
1

2

M
∑

m=1

M
∑

ℓ=1

βmℓ logwmi logwℓi

+ δ1 log yi +
1
2δ2 log

2 yi +

M
∑

m=1

γm log yi logwmi + εi

(3.12)

where Ci is the cost of production for a potential observation i, w1i, w2i, . . . , wMi are the
prices of the M factors of production faced by i and yi the amount of output produced by i.
Similarly to the expenditure function, the cost function should be homogeneous of degree one
in the input prices: if all input prices change proportionally, then the cost of producing the
same amount of output should also change by the same proportion. Linear homogeneity in the
ws implies that the parameters of the cost function should satisfy the following constraints:
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�

M
∑

m=1
βm = 1 �

M
∑

m=1
βmℓ = 0 �

M
∑

ℓ=1

βmℓ = 0 �

M
∑

m=1
γm = 0

while from Young’s theorem we get βmℓ = βℓm for all m and ℓ.
By applying Shephard’s lemma on this cost function, one can obtain the input demand

equations as functions of the parameters, input prices and output. Using these input demand
functions, the cost of purchasing or renting each input m as a share of total cost is a linear
function in the parameters of the cost function:

s1i = β1 +
M
∑

ℓ=1

β1ℓ logwℓi + γ1 log yi + ε1i

s2i = β2 +
M
∑

ℓ=1

β2ℓ logwℓi + γ2 log yi + ε2i

...
...

...

sMi = βM +
M
∑

ℓ=1

βMℓ logwℓi + γM log yi + εMi

(3.13)

Again, we end up with a system of M equations with restrictions on the parameters that span
multiple equations. Because the dependent variables should sum to one by construction, once
we impose these restrictions, the covariance matrix of the error terms must become singular.
Therefore, one of the share equations is typically dropped from the system before estimation.

The process of deriving a system of cost share equations in the production context is almost
identical to what was done in the demand system example. However, there is a big difference
between the two models. The original equation in the demand system (expenditure function)
contains unobserved quantities and, therefore, cannot be used to estimate the parameters.
Therefore, using the resulting system of expenditure shares was a necessity. In the case of the
cost function, all quantities that appear in (3.12) are observable and one can get estimates
of all parameters by running a linear regression model on it. Why then, should we bother to
estimate the system of cost shares? One reason may be that the objective of the research is to
confront production theory with the data or to infer whether producers are cost minimizers,
in the context of the application. This can be done by evaluating the plausibility of the
parametric constraints across equations. A second and probably more important reason is
that the system approach allows reusing the observed data points twice to estimate a fixed
set of parameters. This can be done by estimating a system of M equations, consisting of the
original cost function and M−1 cost share equations. Imposing restrictions that stem from
economic theory, not only imposes additional structure on the data-generating process, but
also extracts more information from the data.

3.4.3 Imposing Linear Restrictions

We now turn to the task of imposing restrictions on the values of the parameters in a general
SUR model. For this purpose it is convenient to use the representation:

yi = Xiβ + εi, εi ∼ N
(

0,Ω−1
)

(3.14)

where yi and εi are M×1 vectors, β is K×1 and Xi is an M×K matrix. This is a convenient
representation because all slope parameters are contained in a single vector and constraints on
the values of β can be incorporated in the prior. If these constraints are linear in the slope
parameters, that is if they take the form:

Rβ = r (3.15)

then the procedure discussed in Section 2.6 can be used for doing so. In the expression above
R is a q×K matrix and r a q×1 vector, where q is the number of linear constraints to be
imposed. In short, a multivariate Normal prior is placed on β, with mean m and precision
matrix P, and which ignores the constraints altogether. Next, a multivariate Normal prior for
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r|β, with mean Rβ and precision matrix Ξ, is used to define how far away β is allowed to be
from satisfying the restrictions. Finally, an application of Bayes’ theorem updates the prior
for β with the information contained in the constraints.

� Example 3.2 Aggregate Cost Function
In this example we will consider again the data from the Penn World Table (Feenstra et al., 2015),
which we first used in Example 2.2. This dataset contains annual information on a series of aggregate
variables for the EU-15 Member States from 1970 to 2014. Apart from the variables that we used
before (real GDP, capital stock and labor input), we will now also use the following variables from the
dataset:

w : annual compensation of a unit of labor, adjusted for human capital ($2011)
r : rental price of capital (proportion of the value of capital stock)
C : cost of production

We specify a model for the aggregate cost function and the resulting cost share equations, along
the lines presented in subsection 3.4.2:

logCi = β0 + βK log ri + βL logwi +
1
2
βKK log2 ri + βKL log ri logwi +

1
2
βLL log2 wi

+ δ1 logYi ++δ2 log
2 Yi + γK logYi log ri + γL logYi logwi + ε1i

sKi = βK + βKK log ri + βKL logwi + γK logYi + ε2i

sLi = βL + βKL log ri + βLL logwi + γL logYi + ε3i

where sK and sL are the shares of capital and labor inputs, respectively, in the cost of production.
The restrictions that we need to impose on the βs and γs for the cost function to be homogeneous of
degree one in r and w are:

� βK + βL = 1

� βKK + βKL = 0

� βKL + βLL = 0

� γK + γL = 0

During estimation we also need to make sure that the values of the parameters that appear in more
that a single equation are restricted to be the same. Due to singularity of the error covariance matrix
when all parametric constraints are imposed, we need to drop one of the cost share equations from
the system and, for this example, we will drop the labor share equation.

The following table presents the results obtained by estimating the system consisting of the cost
function and the capital share equation using BayES’ sur() function. From this table we can see that
the constraints hold approximately at the posterior means and medians of the parameters. A parameter
of particular interest when estimating a cost function is the one associated with the logarithm of output.
In this example, E (δ1|•) ≈ 0.976 and, because it is smaller than one, it suggests that the underlying
production technology is characterized by increasing returns to scale at the geometric mean of the
data; a result that we also obtained by estimating the parameters of a production function in Example
2.2.

Mean Median Sd.dev. 5% 95%

logC
constant 12.7149 12.7148 0.00582343 12.7052 12.7244
logr 0.397411 0.397414 0.00234082 0.393545 0.401282
logw 0.602527 0.602525 0.00234095 0.598654 0.606402
logrlogr 0.0930304 0.0930325 0.00352821 0.0872569 0.0988219
logrlogw -0.18606 -0.18606 0.00705639 -0.197617 -0.174525
logwlogw 0.0930302 0.0930295 0.00352831 0.0872615 0.0988132
logY 0.97556 0.975545 0.00377648 0.969294 0.981731
logYlogY 0.0127822 0.0127701 0.00169557 0.00999777 0.0155466
logYlogr -0.00747926 -0.00751856 0.00176828 -0.0103636 -0.00453448
logYlogw 0.00747897 0.00751737 0.00176843 0.00453253 0.0103668

sK
constant 0.397411 0.397414 0.00234071 0.393538 0.401288
logr 0.186062 0.186061 0.00705629 0.17452 0.197649
logw -0.186059 -0.18606 0.00705653 -0.197616 -0.174531
logY -0.00747984 -0.0075215 0.00176798 -0.0103651 -0.00453182

http://www.rug.nl/ggdc/productivity/pwt/
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The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

// construct the constant term and the cost share of capital

Data.constant = 1;

Data.sK = Data.r .* Data.K ./ Data.C;

// take logs or relevant variables

Data.logC = log(Data.C);

Data.logY = log(Data.Y);

Data.logr = log(Data.r);

Data.logw = log(Data.w);

// normalize variables and create interaction terms

Data.logr = Data.logr - mean(Data.logr);

Data.logw = Data.logw - mean(Data.logw);

Data.logY = Data.logY - mean(Data.logY);

Data.logrlogr = Data.logr.*Data.logr;

Data.logrlogw = Data.logr.*Data.logw;

Data.logwlogw = Data.logw.*Data.logw;

Data.logYlogY = Data.logY.*Data.logY;

Data.logYlogr = Data.logY.*Data.logr;

Data.logYlogw = Data.logY.*Data.logw;

// run the SUR model while imposing all eight constraints

SURmodel = sur( {

logC ∼ constant logr logw logrlogr logrlogw logwlogw

logY logYlogY logYlogr logYlogw,

sK ∼ constant logr logw logY

}, "constraints" = {

logC$logr + logC$logw = 1,

2*logC$logrlogr + logC$logrlogw = 0,

2*logC$logwlogw + logC$logrlogw = 0,

logC$logYlogr + logC$logYlogw = 0,

sK$constant - logC$logr = 0,

sK$logr - 2*logC$logrlogr = 0,

sK$logw - logC$logrlogw = 0,

sK$logY - logC$logYlogr = 0

}, "Xi" = 1e9*eye(8,8));
✝ ✆

3.5 Synopsis

This chapter covered in detail the Seemingly Unrelated Regressions (SUR) model. The model
was introduced as a direct extension to the single-equation linear model and its parameters
interpreted by viewing it as another conditional expectation specification. We used Normal
and Wishart priors for the slope parameters and the precision matrix, respectively, which are
both conjugate. Two extensive examples, one from consumer theory and one from production
theory, were presented to motivate the need for a model that can impose parametric constrains
that span multiple equations.



Chapter 4

Data Augmentation

4.1 Overview

This chapter introduces and discusses the data-augmentation technique. Data augmentation
was formalized by Tanner & Wong (1987), but has its roots in the work of Rubin (1978,
1980) and Li (1988), who were dealing with problems of imputing missing values in datasets.
Tanner & Wong were the first to connect the method to the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977), which works in models estimated by maximum-likelihood,
and to introduce missing or latent data artificially into the analysis for the purpose of facilitating
computations. Data augmentation can be extremely useful in complex models, where sampling
directly from the posterior distribution of the parameters may be challenging, but once the
problem is cast into a latent-data model, the likelihood simplifies considerably.

The following section provides the mathematical/probabilistic justification of data augmen-
tation, in a general setting. A version of the Gibbs sampler in latent-data problems is presented
next, along with a brief discussion around the potential usefulness of the byproducts of the
sampler. The last section of this chapter presents two interesting applications of data aug-
mentation: the linear regression model with heteroskedastic error and the stochastic-frontier
model.

4.2 Data Augmentation in Latent-Data Problems

Consider a general econometric model with a K×1 vector of parameters to be estimated, θ,
and likelihood function p(y|θ), where y is a vector that will store the observed data. Suppose
also that p(θ) is the prior density of θ. Bayesian inference in such a model would proceed by
sampling from the posterior distribution of the parameters:

π (θ|y) ∝ p(y|θ) · p(θ) (4.1)

and summarizing the draws. This is feasible, given the generality of the Gibbs sampler and the
Metropolis-Hastings algorithms, even for the most complex models. However, if the likelihood
function is unconventional and no conjugate priors exist, tailoring the samplers to the problem
may become very challenging and the algorithms may be plagued by very large autocorrelation
times. Suppose, that there exists a random variable, conditionally upon which the likelihood
simplifies considerably. Let z be a vector that would store the values of this random variable.
Because z is, by assumption, not observable it represents the latent data.
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Since z is not observable, inferences about θ cannot be made conditionally on the latent
data. The obvious approach would then be to integrate the latent data from the joint density
of θ and z, given the observed data:

π (θ|y) =
∫

Z

π (θ, z|y) dz =

∫

Z

π (θ|y, z) p(z|y) dz (4.2)

The last integral contains two densities that are not known, but depend on the specification
of the model:

� π (θ|z,y) is the posterior density of the parameters, conditional on both observed and
latent data. It can be obtained from Bayes’ theorem:

π (θ|y, z) ∝ p(y, z|θ) p(θ) = p(y|θ, z) p(z|θ) p(θ) (4.3)

where p(y|θ, z) is easy to handle by construction: this is the reason the latent data are
introduced to the problem in the first place. p(y, z|θ) is the density of both observed
and latent data and is appropriately called the complete-data likelihood , so that it can
be distinguished from p(y|θ), which is called the incomplete- or observed-data likelihood .
p(z|θ) is the density of latent data, conditionally on the parameters, but marginally with
respect to the observed data.

� p(z|y) is the predictive density of the latent data, given the observed. It can be obtained
by integrating θ from the joint density of z and θ, given y:

p(z|y) =
∫

Θ

π (θ, z|y) dθ =

∫

Θ

p(z|y, θ)π (θ|y) dθ (4.4)

Expressing the predictive density of the latent data as an integral that involves π (θ|y) gives
the impression that we are going around in circles: to get π (θ|y) from (4.2) we need p(z|y)
and to get p(z|y) from (4.4) we need π (θ|y). But that is the purpose of the exercise: Tanner
& Wong substitute (4.4) into (4.2), change the order of integration and view the resulting
expression as an operator fixed-point equation.1 They then motivate the following iterative
algorithm as a successive-substitution method for solving fixed-point problems:

(a) sample z(1), z(2), . . . , z(Q), Q ≥ 1, from p(z|y), given the current approximation to
π (θ|y). This step is further broken into the following items:

(a1) sample θ from the current approximation of π (θ|y)
(a2) sample z(1), z(2), . . . , z(Q) from p(z|y, θ) and using the value for θ that was generated

in (a1)

(b) update the current approximation to π (θ|y) using 1
Q

Q
∑

q=1
π
(

θ
∣

∣y, z(q)
)

and repeat

One has to keep in mind that at the time the paper by Tanner & Wong was published the
Gibbs sampler had not yet gained prominence among statisticians and this fixed-point view
on the problem circumvents the issue of sampling from complex distributions. In practice,
data-augmentation algorithms are usually implemented by setting Q in step (a1) above, equal
to one, while treating the latent data as additional quantities to be estimated, along with the
parameters. In this context, the joint posterior density of θ and z is given by:

π (θ, z|y) = p(y, z|θ) p(θ)
p(y)

∝ p(y|θ, z) p(z|θ) p(θ) (4.5)

1One subtle point in the derivation is that we need to distinguish between θ as an argument of π (•|y) and
π (•|y, z) and the dummy of integration in (4.4). Tanner & Wong use φ as the dummy of integration to derive
the fixed-point equation.
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A Gibbs sampler can now be implemented, which iterates between sampling from the full
conditionals of θ and z, either in one or multiple blocks for each one of them. It is stressed
that these full conditionals are based on the complete-data likelihood and the prior density of
θ, as these appear on the numerator of the fraction in the last expression. Once the Gibbs
sampler completes, ignoring the draws on the latent data and considering only the draws on
the parameters amounts to integrating-out z from π (θ, z|y), as expressed in the first equality
of (4.2).

A generic version of the Gibbs sampler with data-augmentation is presented in Algorithm
4.1. Sampling for θ corresponds to step (a1) in the Tanner & Wong formulation, but with
Q = 1. In this case, z is integrated-out from π (θ, z|y) using only a single draw and step (b)
becomes degenerate. Sampling for z in the Gibbs sampler corresponds to step (a2).

Algorithm 4.1 Gibbs Sampler with Data Augmentation

set the number of burn-in iterations, D
set the number of draws to be retained, G
set θ to a reasonable starting value
set z to a reasonable starting value
for g = 1:(D+G) do
draw θ from π (θ|y, z), either in one or multiple blocks
draw z from p(z|y, θ), either in one or multiple blocks

if g > D then
store the current value of θ
possibly store the current value of z

end if
end for

One interesting feature of the Gibbs sampler in Algorithm 4.1 is that it allows for storing
the draws on z. This is because, in the context of an application, the latent data can have
a meaningful interpretation and drawing inferences on them may be part of the objectives of
the analysis. Because the Gibbs sampler produces draws from the joint posterior density of θ
and z, the draws on z alone are from the posterior density of the latent data, marginally with
respect to θ and conditional only on the observed data. Therefore, these draws can be used to
make probabilistic statements regarding the values of z.

4.3 Applications of Data Augmentation

This section considers two applications of data augmentation. Both of them are interesting in
their own right and give rise to classes of models which can be viewed as direct extensions to the
linear regression model. Although the parameters of many of the models in the two classes can
be estimated without making use of data augmentation, application of the technique simplifies
the analysis considerably.

4.3.1 The Linear Model with Heteroskedastic Error

In the treatment of the linear regression model in Chapter 2 we maintained the assumption
that the error term for each potential observation, i, follows a Normal distribution with mean
zero and precision τ . In the linear regression model with heteroskedastic error we will relax
the assumption that the εis have the same precision parameter for all potential observations,
while we will keep assuming that they follow a Normal distribution and are independent of
each other. Mathematically, the model becomes:

yi = x′
iβ + εi, εi ∼ N

(

0, 1
τi

)

(4.6)
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Of course, in an application with N observations we should not expect to be able to estimate
all N precision parameters, along with the K βs, unless very informative priors are imposed on
them; there is simply not enough information in the data. An alternative course of action is to
impose some additional structure, in a hierarchical fashion, on the way the τis are determined
in the population. There are a few approaches for doing so. Koop (2003, pp.124-130) describes
a procedure where each τi is defined as the product of a common precision parameter and an
observation-specific random variable, which is assumed to follow an Exponential distribution.
A model with similar assumptions is presented in Greenberg (2013, pp.51-52), where it is shown
that the model is equivalent to assuming that the error term follows a Student-t distribution
(see also Geweke, 1993 on this). We will take here a different approach, which is general enough
to account for heteroskedasticity of unknown form, as well as allow for estimating the effect of
particular variables on the τis.

Because precision parameters need to be positive, we will assume that the logarithm of
each τi follows a Normal distribution:

log τi ∼ N
(

w′
iδ,

1
φ

)

(4.7)

where wi is an L×1 vector of observable variables which affect the precision of εi, and δ is
an L×1 vector of parameters. φ is another precision parameter to be estimated. The model
allows for wi to consist of only a constant term, in which case each log τi follows a Normal
distribution with common mean. Keep in mind that the expression above is not a prior density
in the sense we have been using priors until now. Rather, δ and φ are additional parameters to
be estimated, while viewing the model from an incomplete-data perspective leads to a natural
interpretation of the τis as latent data: if the τis were observable then we would be able to
estimate the model’s parameters using very similar full conditionals to the ones presented in
Theorem 2.1. Data augmentation provides a way of integrating-out the uncertainty associated
with the unobserved τis when drawing inferences on the model’s parameters: β, δ and φ.

Given that each τi follows a log-Normal distribution, the complete-data likelihood for this
model is:

p
(

y, {τi}
∣

∣X,W,β, δ, φ
)

=

N
∏

i=1

p
(

yi
∣

∣xi,β, τi
)

p
(

τi
∣

∣wi, δ, φ
)

=

N
∏

i=1

τ
1/2
i

(2π)1/2
exp

{

−τi (yi − x′
iβ)

2

2

}

×
N
∏

i=1

φ1/2

τi (2π)
1/2

exp

{

−φ (log τi −wiδ)
2

2

}

(4.8)

where W is an N×L matrix that stores the values of the variables that affect the precision
of the error term, for all N observations. The first equality above is obtained by expressing
the joint density of observed and latent data as the product of a conditional density and a
marginal density. Once, however, we condition on the τis, y no longer depends on W, δ and
φ. Likewise, the τis depend on no other parameters or data, once we condition on W, δ and
φ. The second equality results from the Normality of the error terms and log-Normality of the
τis and the conditional independence of the yis, as well as of the τis.

As in the linear regression model with homoskedastic error, we will use a Normal prior for
β, with mean mβ and precision matrix Pβ . For δ we will, again, use a Normal prior, with
mean mδ and precision matrix Pδ, while for φ we will use a Gamma prior, with shape and
rate parameters a and b, respectively. Specification of the priors completes the specification of
the model and by applying Bayes’ theorem we get:

π
(

β, δ, φ, {τi}
∣

∣y,X,W
)

∝ p
(

y, {τi}
∣

∣X,W,β, δ, φ
)

p(β) p(δ) p(φ) (4.9)

The densities in the right-hand side of last expression are all known: the the first density is
given in (4.8), p(β) and p(δ) are multivariate-Normal densities and p(φ) is a Gamma density.
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Before we can implement a Gibbs sampler we need to derive the full conditionals of all
unobserved quantities: β, δ, φ and the τis (all N of them). It is stressed that the τis are
not parameters in the model and, therefore, have no priors associated with them. They are,
however, unobserved random variables and data augmentation requires sampling from their
conditional (on everything else in the model) density to integrate-out the uncertainty associated
with them. Although the algebraic transformations required to get the full conditionals of the
parameters and latent-data are tedious, we have seen versions of many of them before:

� deriving the full conditional of β in the linear model with heteroskedastic error is very
similar to the case of homoskedastic error

� deriving the full conditionals of δ and φ requires exactly the same transformations pre-
sented above Theorem 2.1, with log τi assuming the role of yi and wi that of xi

� deriving the full conditional of each τi is different from what we encountered until now,
but the algebraic transformations are straightforward

The important thing is that, again, all three priors used here are conjugate for their respective
parameters and this simplifies sampling from their full conditionals. On the other hand, the full
conditional of the τis does not belong any known parametric family and a different approach,
other than direct sampling, must be used to obtain samples from it. Metropolis-Hastings
updates for each τi are certainly feasible, albeit not necessarily the most efficient choice, at
least as far as computational burden is concerned. The results are presented below in the form
of a theorem, followed by an application to an aggregate production function.

THEOREM 4.1: Full Conditionals for the Heteroskedastic Linear Model
In the linear regression model with Normally distributed, heteroskedastic error and K
independent variables in the observed equation:

yi = x′
iβ + εi, εi ∼ N

(

0, 1
τi

)

and L independent variables in the precision equation:

log τi = w′
iδ + vi, vi ∼ N

(

0, 1
φ

)

and with Normal priors for β and δ and a Gamma prior for φ:

p(β) =
|Pβ |1/2

(2π)
K/2

exp

{

−1

2
(β −mβ)

′
Pβ (β −mβ)

}

,

p(δ) =
|Pδ|1/2

(2π)
L/2

exp

{

−1

2
(δ −mδ)

′
Pδ (δ −mδ)

}

and p(φ) =
ba

Γ (a)
φa−1e−bφ

the full conditionals of β and δ are Normal:

π (β|•) = |P̃β |1/2

(2π)K/2
exp

{

−1

2
(β − m̃β)

′
P̃β (β − m̃β)

}

π (δ|•) = |P̃δ|1/2

(2π)L/2
exp

{

−1

2
(δ − m̃δ)

′
P̃δ (δ − m̃δ)

}

and the full conditional of φ is Gamma:

π (φ|•) = b̃ã

Γ (ã)
φã−1e−b̃φ

where:
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� P̃β =
N
∑

i=1

τixix
′
i +Pβ and m̃β =

(

N
∑

i=1

τixix
′
i +Pβ

)−1( N
∑

i=1

τixiyi +Pβmβ

)

� P̃δ = φW′W +Pδ and m̃δ = (φW′W +Pδ)
−1

(φW′z∗ +Pδmδ)

� ã = N
2 + a and b̃ = 1

2 (z
∗ −Wδ)

′
(z∗ − Zδ) + b

� z∗ is the N×1 vector obtained by stacking the log τis

The full conditional of τi, i = 1, 2, . . . , N , is:

π (τi|•) ∝ τ
−1/2
i exp

{

−τi (yi − x′
iβ)

2

2
− φ (log τi −w′

iδ)
2

2

}

� Example 4.1 Aggregate Production with Heteroskedasticity
In this example we will use again the data from the Penn World Table (Feenstra et al., 2015), which we
first used in Example 2.2 to estimate an aggregate production function. We will assume here that the
production function is Cobb-Douglas and we will add a time trend to capture technological progress:

logYi = β1 + β2 logKi + β3 log Li + β4trendi + εi

Apart from the homoskedastic model we estimated in Example 2.2, we will consider two models with
heteroskedastic error, one in which the precision of the error term follows a log-Normal distribution
with common location parameter, γ:

log τi = γ + vi, vi ∼ N
(

0, 1
φ

)

and an extension in which the location parameter is a function of the logarithms of the two inputs and
time:

log τi = γ1 + γ2 logKi + γ3 log Li + γ4trendi + vi, vi ∼ N
(

0, 1
φ

)

For ease of comparison, the results from the model with homoskedastic error are reproduced in the
next table. The following two tables contain the results from the models with heteroskedastic error.

Mean Median Sd.dev. 5% 95%

constant 3.24514 3.24896 0.279077 2.784 3.69835
logK 0.583076 0.582767 0.0238982 0.544447 0.622634
logL 0.441425 0.441675 0.0225753 0.403951 0.477781
trend 0.00119668 0.00120461 0.000508724 0.000353659 0.0020245

tau 72.1455 72.0801 3.9129 65.778 78.7437
sigma e 0.117862 0.117787 0.00320426 0.112692 0.123302

Mean Median Sd.dev. 5% 95%

logY
constant 2.60779 2.60556 0.236055 2.22318 3.00122
logK 0.638856 0.639117 0.0203548 0.604912 0.672072
logL 0.390394 0.390249 0.0197409 0.358244 0.423338
trend -0.000753112 -0.000761663 0.000426506 -0.00142877 -3.1367e-05

logtau
constant 4.70099 4.7012 0.099249 4.53613 4.86476

phi 1.00228 0.943447 0.308244 0.625406 1.615
sigma v 1.02992 1.02956 0.1422 0.786939 1.26465

The first thing to notice from these results is that the parameters of the production function
change slightly when moving from the homoskedastic to the heteroskedastic models, as well as from
the first heteroskedastic model to the second. An interesting pattern appears in the results of the
heteroskedastic model with observation-specific location parameter for τi: as the amount of capital
employed in the production process increases, the precision of the error term increases as well, while
the opposite tendency appears for the amount of labor (although the 90% credible interval for the
associated parameter contains zero). This could be due to, for example, the standardization of pro-
duction in capital-intensive processes, leading to smaller margins of error. On the other, the precision
of the error term decreases over time.

http://www.rug.nl/ggdc/productivity/pwt/
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Mean Median Sd.dev. 5% 95%

logY
constant 2.09591 2.09506 0.193072 1.78358 2.41586
logK 0.683124 0.683164 0.0165634 0.655633 0.709897
logL 0.34707 0.346883 0.0162974 0.320587 0.374088
trend -0.00147632 -0.00148201 0.000370967 -0.00208157 -0.000866163

logtau
constant -6.82863 -6.83205 4.93942 -14.8837 1.29765
logK 0.901962 0.903622 0.422066 0.209257 1.59166
logL -0.454889 -0.456639 0.387832 -1.08508 0.184916
trend -0.0176653 -0.0176734 0.00897148 -0.0324105 -0.00287653

phi 1.04366 0.992658 0.277183 0.71938 1.49932
sigma v 1.00025 1.00372 0.114119 0.816719 1.17906

After estimating the three models, we can compare them using Bayes factors. The following two
tables present model-comparison results based on the Lewis and Raftery and the Chib and Jeliazkov
approximations to the logarithm of the marginal likelihood, respectively. With equal prior model
probabilities, the data clearly favor the second heteroskedastic model.

Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

homosked 442.739 Lewis & Raftery 0.333333 2.25774e-12
heterosked1 462.762 Lewis & Raftery 0.333333 0.00112074
heterosked2 469.554 Lewis & Raftery 0.333333 0.998879

Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

homosked 442.746 Chib & Jeliazkov 0.333333 2.55552e-12
heterosked1 462.417 Chib & Jeliazkov 0.333333 0.000892387
heterosked2 469.438 Chib & Jeliazkov 0.333333 0.999108

Obtaining the results presented above using BayES can be achieved using the code in the following
box.

✞ ☎
// import the data and transform the variables

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

Data.constant = 1; Data.logY = log(Data.Y);

Data.logK = log(Data.K); Data.logL = log(Data.L);

// run a homoskedastic Cobb-Douglas model

homosked = lm(logY ∼ constant logK logL trend,

"logML_CJ"=true);

// run a simple heteroskedastic Cobb-Douglas model

heterosked1 = lm(logY ∼ constant logK logL trend | constant,

"logML_CJ"=true);

// run a heteroskedastic Cobb-Douglas model with determinants in log-tau

heterosked2 = lm(logY ∼ constant logK logL trend | constant logK logL trend,

"logML_CJ"=true);

// compare the three models

pmp( { homosked, heterosked1, heterosked2 } );

pmp( { homosked, heterosked1, heterosked2 }, "logML_CJ"=true );
✝ ✆

4.3.2 The Stochastic Frontier Model

The stochastic-frontier model was introduced independently by Meeusen & van den Broeck
(1977) and Aigner et al. (1977) as a way of estimating the parameters of a production func-
tion, while recognizing that producers may not be exploiting the full potential of the production
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technology, in the sense that they are not producing the maximum possible output, given the
amount of inputs they are using. Jondrow et al. (1982) proposed an approach to estimating
producer-specific technical-efficiency scores after the estimation of the model and this devel-
opment lead to a surge of applications of the model, whose primary objective was not the
estimation of production function, but the benchmarking of producers based on their technical
efficiency. All three papers use frequentist methods and the first Bayesian treatment of the
model appeared almost two decades after its introduction (van den Broeck et al., 1994).

The specification of the model starts by representing the production technology as a function
of production factors, f (x), while explicitly recognizing that this production function returns
the maximum possible output, y, that can be produced given x and that this maximum output
may not always be attained by producers. The next step is to define the technical efficiency
of a potential observation, i:

TEi =
yi

f (xi)
(4.10)

Technical efficiency is the ratio of observed output, yi, over maximum possible output, f (xi),
and, as such, it assumes values on the unit interval. By taking the logarithm of both sides of
this expression and rearranging, the estimable form of a production frontier becomes:

log yi = log f (xi)− ui + vi (4.11)

where ui ≡ − logTEi. Because TEi ∈ (0, 1], ui is non-negative and during estimation it is
treated as an one-sided error term. vi on the other hand, is the typical error term in stochastic
models, which captures statistical noise.

To proceed with estimation one needs to specify the functional form of f (x), as well as a
distribution for ui. Typically, a Cobb-Douglas or translog form is assumed for the production
function, leading to a model where the logarithm of output is a linear function of parameters
and the logarithms of inputs and possibly their interactions. The distributional assumption
imposed on ui is not as straightforward. Meeusen & van den Broeck (1977) assumed that ui

follows an Exponential distribution, while Aigner et al. (1977) used a half-Normal distribution.
Many more distributions with support on the interval [0,+∞) have since been proposed, giving
rise to alternative stochastic-frontier models. We will provide here an extensive treatment of
the Exponential model and compare it only to the half-Normal model, before demonstrating
the use of these two models in an application, at the end of this subsection.

To simplify notation, let yi denote the logarithm of output for a potential observation, i,
log yi, and let xi denote the K×1 vector of values of the independent variables that enter the
specification of the production function, for the same i. If the production function is Cobb-
Douglas then xi is simply equal to logxi. If, on the other hand, the production function is
translog then xi will contain the logarithms of inputs, as well as their squared terms and their
interactions. With these definitions, the statistical model becomes:

yi = x′
iβ − ui + vi, vi ∼ N

(

0, 1
τ

)

, ui ∼ Exp (λ) (4.12)

The parameters of the model are β, τ and λ. The uis are unknown and, in a data-augmentation
setting, will be treated as latent data. Notice, however, that the uis now have an interesting
interpretation: because we defined ui as − logTEi, the technical efficiency score of a potential
observation i can be estimated by inverting this relationship. In every iteration of the Gibbs
sampler, random draws from the posterior distribution of each ui will be produced and, if these
draws are stored in memory, then a point estimate of TEi can be obtained by calculating the
sample mean of e−ui across these draws.

The complete-data likelihood for the model is:

p
(

y,u
∣

∣X,β, τ, λ
)

=

N
∏

i=1

p
(

yi
∣

∣xi, ui,β, τ
)

p
(

ui

∣

∣λ
)

=
N
∏

i=1

τ1/2

(2π)
1/2

exp

{

−τ (yi − x′
iβ + ui)

2

2

}

×
N
∏

i=1

λe−λui

(4.13)
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where, as before, y and X are the vector and matrix of the stacked values for the dependent
and independent variables, respectively, and u is the N×1 vector of stacked values for the
uis. The first equality above expresses the joint density of observed and latent data as the
product of a conditional and a marginal density, while the second equality comes from the
distributional assumptions of vi and ui and the conditional independence of these two error
components.

We will keep using a multivariate-Normal prior for β, with mean m and precision matrix P
and a Gamma prior for τ , with shape and rate parameters aτ and bτ , respectively. The values
of the hyperparameters can be set such that these priors are very vague. For λ, however, we
need to use a more informative prior and we follow van den Broeck et al. (1994) in using a
Gamma prior for it, with shape parameter, aλ, equal to one and rate parameter, bλ, equal to
− log r⋆, where r⋆ is the prior median efficiency. With the likelihood function and the prior
densities at hand, we can express the posterior density of the parameters and the latent data
as:

π
(

β, τ, λ,u
∣

∣y,X
)

∝ p
(

y,u
∣

∣X,β, τ, λ
)

p(β) p(τ) p(λ) (4.14)

where the first density in the right-hand side of the last expression is given in (4.13) and the
the last three densities are the prior densities for the three blocks of parameters. By defining
y∗ as y − u, it is easy to see that the full conditionals of β and τ are the same as the ones
presented in Theorem 2.1, with y∗ assuming the role of y. The full conditional of λ is Gamma,
with shape parameter equal N + aλ and rate parameter

∑

i ui + bλ, while the transformations
required to obtain this full conditional are exactly the same as the ones performed in Example
1.2, with ui assuming the role of the data. It requires some additional work to show that the
full conditional of every ui is Normal, truncated from below at zero. Once again, we present
the full conditionals of the Exponential stochastic-frontier model in the form of a theorem, for
ease of reference.

THEOREM 4.2: Full Conditionals for the Exponential Stochastic-Frontier
Model
In the stochastic-frontier model with Normally-distributed noise and Exponentially-distri-
buted inefficiency component of the error term and with K independent variables:

yi = x′
iβ − ui + vi, vi ∼ N

(

0, 1
τ

)

, ui ∼ Exp (λ)

and with Normal prior for β and Gamma priors for τ and λ:

p(β) =
|P|1/2

(2π)K/2
exp

{

−1

2
(β −m)

′
P (β −m)

}

,

p(τ) =
baτ
τ

Γ (aτ )
τaτ−1e−bττ and p(λ) =

baλ

λ

Γ (aλ)
λaλ−1e−bλλ

the full conditional of β is Normal:

π (β|•) = |P̃|1/2

(2π)K/2
exp

{

−1

2
(β − m̃)

′
P̃ (β − m̃)

}

and the full conditionals of τ and λ are Gamma:

π (τ |•) = b̃ãτ
τ

Γ (ãτ )
τ ãτ−1e−b̃ττ and π (λ|•) = b̃ãλ

λ

Γ (ãλ)
λãλ−1e−b̃λλ

where:
� P̃ = X′X+P and m̃ = (X′X+P)−1 (X′y∗ +Pm)

� ãτ = N
2 + aτ and b̃τ = 1

2 (y
∗ −Xβ)′ (y∗ −Xβ) + bτ
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� ãλ = N + aλ and b̃λ =
∑

i ui + bλ

� y∗ = y + u

The full conditional of ui, i = 1, 2, . . . , N , is Normal, truncated from below at zero:

π (ui|•) = τ1/2

(2π)1/2Φ(τ1/2µi)
exp

{

− τ
2 (ui − µi)

2
}

1(ui ≥ 0)

where µi = − (yi − x′
iβ)− λ

τ .

Before we proceed to an application, we note that the derivation of the full conditionals of
the parameter blocks in stochastic-frontier models with different specifications of the distribu-
tion of ui are exactly the same for all blocks except, obviously, for ui itself and any parameters
that enter the assumed density of ui. For example, in the half-Normal stochastic-frontier model

it is assumed that ui ∼ N+
(

0, 1
φ

)

. The full conditionals of β and τ are exactly the same as

in the Exponential stochastic-frontier model. A Gamma prior for φ is conjugate and the full
conditional of φ is Gamma with shape and rate parameters, N

2 +aφ and u′u
2 + bφ, respectively.

Finally, the full conditional of ui is Normal, truncated from below at zero, but with different
location and scale parameters:

π (ui|•) = (τ+φ)1/2

(2π)1/2Φ((τ+φ)1/2µi)
exp

{

− τ+φ
2 (ui − µi)

2
}

1(ui ≥ 0)

where µi = − τ
τ+φ (yi − x′

iβ).

� Example 4.2 US Electric Utilities
In this example we will use part of the dataset constructed and first used by Rungsuriyawiboon &
Stefanou (2007). This version of the dataset contains information on 81 US investor-owned electric
utilities, each one of them observed annually from 1986 to 1997, on the following variables:

q : megawatt hours of electric power generated
K : real capital stock at replacement cost
L : deflated value of the cost of labor and maintenance
F : deflated value of the cost of fuel used for power generation

trend : a trend variable running from −6 to 5

To concentrate on the inefficiency part of the model, we will assume that the production function
is Cobb-Douglas in the three inputs and we will add a time trend to capture technological progress:

log qi = β1 + β2 logKi + β3 log Li + β4 log Fi + β5trendi − ui + vi

We will first run a simple linear model, which disregards any inefficiency in production (ui=0), to serve
as a benchmark for comparisons. The results from this model appear in the following table.

Mean Median Sd.dev. 5% 95%

constant 5.11508 5.11499 0.130217 4.90232 5.32902
logK 0.179785 0.179915 0.0234004 0.141448 0.218299
logL 0.196873 0.197032 0.0191965 0.165351 0.228522
logF 0.620872 0.620971 0.023638 0.58204 0.659569
trend 0.0151138 0.0151111 0.00251212 0.0109742 0.0192037

tau 14.584 14.5772 0.660596 13.5131 15.6864
sigma e 0.262057 0.261917 0.00595144 0.252489 0.272037

We next consider two stochastic-frontier models, one where ui is assumed to follow an Exponential
distribution and one where it follows a half-Normal distribution. The results from these two models
are given in the following tables.
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Mean Median Sd.dev. 5% 95%

constant 5.64397 5.64403 0.094784 5.48794 5.79964
logK 0.184463 0.184559 0.0204281 0.150623 0.217666
logL 0.235713 0.235865 0.0140363 0.212521 0.258588
logF 0.56514 0.565127 0.0217979 0.529248 0.600886
trend 0.0215448 0.0215612 0.00185282 0.018475 0.02456

tau 84.3254 83.181 12.3741 65.9133 106.366
lambda 4.01486 4.00855 0.197964 3.7016 4.35148

sigma v 0.109762 0.109645 0.00794179 0.096969 0.123176
sigma u 0.249678 0.249468 0.0122746 0.229811 0.270172

Mean Median Sd.dev. 5% 95%

constant 5.80095 5.80058 0.102632 5.6305 5.96848
logK 0.169237 0.169645 0.0230587 0.130457 0.206874
logL 0.236839 0.236838 0.0128786 0.215705 0.258086
logF 0.574338 0.573809 0.0231652 0.537095 0.613029
trend 0.0212594 0.0212574 0.0018476 0.0182299 0.0243108

tau 160.573 156.645 32.2774 114.452 219.885
phi 6.17676 6.16406 0.387879 5.56205 6.8369

sigma v 0.0800751 0.0798994 0.00785511 0.0674414 0.0934788
sigma u 0.402958 0.402779 0.0126301 0.382448 0.424018

The estimates of the parameters of the production function are very similar in the two stochastic-
frontier models, but are slightly different from the ones obtained from the simple linear model. Fur-
thermore, the inclusion of the inefficiency term in the stochastic-frontier models leads to a dramatic
increase in the precision of the noise component of the error term. This is to be expected: by allow-
ing for inefficiency in production, what was treated by the linear model as noise is separated by the
stochastic-frontier models into noise and inefficiency.

After the estimation of a stochastic-frontier model we can get observation-specific estimates of
the efficiency scores. These are obtained by summarizing the exponential of minus the draws from the
full conditionals of the uis, which are generated when running the Gibbs sampler. The histograms of
the efficiency-score estimates from the two stochastic-frontier models appear in the following figure.
The distributions of efficiency scores from both models have the typical long tail to the left (fewer
firms are more inefficient), but are quite different from each other.
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The relative plausibility of each model given the data can be assessed using Bayes factors. Based
on the Lewis and Raftery approximation of the log-marginal likelihood, we conclude that the data
strongly favor the Exponential stochastic-frontier model over the simple linear model, as well as the
half-Normal model (see the following table).
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Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

LM -124.249 Lewis & Raftery 0.333333 3.23169e-44
SF Exp -24.1139 Lewis & Raftery 0.333333 0.994596
SF hNorm -29.3292 Lewis & Raftery 0.333333 0.00540351

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data and transform the variables

Data = webimport("www.bayeconsoft.com/datasets/USUtilities.csv");

Data.constant = 1;

Data.logq = log(Data.q); Data.logK = log(Data.K);

Data.logL = log(Data.L); Data.logF = log(Data.F);

// run a linear model

LM = lm(logq ∼ constant logK logL logF trend);

// run an Exponential stochastic-frontier model

SF_Exp = sf(logq ∼ constant logK logL logF trend, "udist"="exp");

// run a half-Normal stochastic-frontier model

SF_hNorm = sf(logq ∼ constant logK logL logF trend, "udist"="hnorm");

// store the efficiency scores as variables in the dataset

store( eff_i, eff_Exp, "model"=SF_Exp );

store( eff_i, eff_hNorm, "model"=SF_hNorm );

// plot histograms of the efficiency scores from the two models

myFigure = multiplot(1,2);

hist( subplot(myFigure, 1, 1), Data.eff_Exp,

"title" = "Exponential Model", "xlabel" = "efficiency", "grid"="on" );

hist( subplot(myFigure, 1, 2), Data.eff_hNorm,

"title" = "Half-Normal Model", "xlabel" = "efficiency", "grid"="on" );

// compare the three models

pmp( { LM, SF_Exp, SF_hNorm } );
✝ ✆

4.4 Marginal Data Augmentation

By artificially introducing latent data into a complex model, data augmentation can vastly
simplify the implementation of a sampling algorithm. However, the resulting simplifications
often induce high autocorrelation in the draws obtained from such an algorithm. Meng & van
Dyk (1999) and J. Liu & Wu (1999) independently proposed a technique designed to speed-up
the convergence rate and mixing properties of an MCMC algortithm. Both proposals represent
direct extensions of previous work conducted in the context of the EM algorithm (Meng & van
Dyk, 1997; C. Liu et al., 1998), but use sightly different terminology: in Meng & van Dyk’s
terminology the technique is called marginal data augmentation, while J. Liu & Wu use the
term parameter-expanded data augmentation.

The technique works by introducing yet another artificial quantity, α, into the problem,
called the working (Meng & van Dyk’s terminology) or expansion parameter (J. Liu & Wu’s
terminology). This parameter is then integrated-out from the complete-data likelihood via
simulation. Contrary to the model’s parameters, however, α has the unique property of be-
ing identified only from the complete data, leaving the observed-data likelihood unaffected by
conditioning. Using the notation introduced in section 4.2, this property is expressed mathe-
matically as:

∫

Z

p(y, z|θ, α) dz = p(y|θ) (4.15)

This expression makes clear that, by ignoring the presence of a working parameter in standard
data augmentation, we are effectively conditioning on a particular value of α. Instead of
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constructing a sampler conditional on α, we could marginalize the working parameter by
multiplying both sides by a prior density, p(α|θ), and then integrating over α. This procedure
leads, after a change in the order of integration on the left-had side, to:

∫

Z





∫

A

p(y, z|θ, α) p(α|θ) dα



 dz = p(y|θ) (4.16)

If we carry out the integration inside the square brackets analytically, we obtain p(y, z|θ) and,
thus, revert back to standard data augmentation, where we iteratively sample from p(z|y, θ)
and p(θ|y, z). As Meng & van Dyk (1999) explain, the key to the computational advantage
of marginalizing the working parameter over conditioning upon it is that the model based on
∫

A
p(y, z|θ, α) dα is likely more diffuse than the one based on p(y, z|θ, α). This is desirable

because, in a standard data augmentation setting, we could achieve zero autocorrelation in the
draws if we could sample iteratively from p(z|y) and p(θ|y, z). Thus, we should aim at having
as diffuse a p(z|y, θ) as possible, up to the limit of p(z|y). But, because:

p(z|y, θ) = p(y, z|θ)
p(y|θ) (4.17)

and the denominator is unaffected by the introduction of α, inducing a more diffuse numerator
would make p(z|y, θ) more diffuse as well. This line of argument implies that the prior on
the working parameter should also be diffuse, although making it improper could alter the
properties of the sampler.2

Although marginal data augmentation may work in the general setting presented above,
Meng & van Dyk (1999) showed formally that if the prior imposed on the working parameter is
proper and independent of the identifiable parameters, θ, then marginal data augmentation can
only improve the geometric rate of convergence of the sampler. Using slightly different notation
than Meng & van Dyk, the procedure starts by defining a one-to-one and differentiable mapping
in the space of the latent data, Da (w). This mapping is indexed by the working parameter
and, according to Meng & van Dyk (1997), prominent choices are:

� rescaling: Da (z) = αz

� recentering: Da (z) = α+ z

� affine transformations: Da (z) = α1 + α2z

Let w denote the transformed latent data that result from applying Da (•) on z. Finally, let
p(α) denote the prior for the working parameter. The Gibbs sampler then iterates between
the steps:

(a) draw w from p(w|y, θ) by sampling for (w, α) and discarding the draw on α; in most
cases this step is further broken into the steps:

(a1) draw α from p(α)

(a2) draw w from p(w|y, θ, α)

(b) draw θ from p(θ|w,y) by sampling for (θ, α) and discarding the draw on α; in most
cases this step is further broken into the steps:

(b1) draw α from p(α|y,w)

(b2) draw θ from p(θ|y,w, α)

The working parameter in this procedure is marginalized in both main steps, but it is
possible to implement a sampler where α is updated in step (b) and this value used in step
(a2), thus skipping step (a1). More possibilities regarding marginalization arise when θ is

2When this is not the case, improper priors on the working parameter are to be preferred. See, for example,
J. Liu & Wu (1999).
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broken into multiple blocks, but the procedures are case specific and we will not go into the
details of any particular problem here.

Before closing this section we mention in passing that there are two additional potential
uses of marginal data augmentation:

1. Because the working parameter can be identified only from the complete data, marginal
data augmentation can be used to impose restrictions in models which require such
restrictions for identification, without the use of “exotic” priors. We will see such an
application of the technique in Section 6.6, as well as in Chapter 7.

2. Although marginal data augmentation was developed in the context of latent-data mod-
els, the technique can also be used to improve mixing in situations without any missing
data. van Dyk (2010) presents such an example, where the working parameter effectively
induces a re-parameterization of the original problem.

4.5 Synopsis

This chapter introduced and covered in detail the technique of data augmentation. Data
augmentation artificially introduces latent data into complex models such that they become
amenable to statistical analysis. It is a very powerful technique and gives Bayesian meth-
ods a clear advantage over frequentist analysis of very complex models: as model complexity
increases, the Bayesian approach introduces latent data and, in most cases, casts the model
into a linear regression one. The latent data are subsequently integrated-out from the poste-
rior density, such that inferences about the model’s parameters can be drawn. This chapter
also covered two simple applications of data augmentation: the linear regression model with
heteroskedastic error and the stochastic-frontier model. Data augmentation will be used ex-
tensively in the following chapters, even when discussing models whose parameters can be
estimated without the introduction of latent data. This is because the technique simplifies the
analysis considerably, both from an analytical and a computational perspective, and we can,
thus, build on the results obtained in the context of the linear regression model.



Chapter 5

The Linear Model with Panel Data

5.1 Overview

This chapter extends the linear regression model such that it can accommodate panel data.
The availability of panel data opens up an array of possibilities for flexible modeling of the
phenomenon of interest, as it allows for controlling for any group-invariant factors that may
affect the dependent variable(s). Although we will use the frequentist terms “fixed effects”,
“random effects” and “random coefficients” to describe the alternative panel-data models, we
do so while recognizing that the terms themselves may appear as conveying information that
they should not. In fact, the use of these terms is rather controversial in a Bayesian setting
because parameters or “effects” are always random in this context. As McCulloch & Rossi
(1994) put it, “in the Bayesian point of view, there is no distinction between fixed and random
effects, only between hierarchical and non-hierarchical models”.

The following section defines what a panel dataset is and discusses the assumptions behind
the alternative panel-data models. Although we will almost exclusively use the group-time
definition of panel data, it is mentioned in passing that the models can be applied also in
contexts where there is a natural classification of observations in groups and where no time
dimension appears in the data. Estimation procedures for the alternative models are described
using data augmentation, while multiple examples are used to illustrate their application.

The techniques presented here can be applied to models other than the linear regression
one. However, the chapter focuses on the linear regression model, as this is arguably the
simplest practical model that is extensively used in the econometrics literature. Subsequent
chapters will frequently contain subsections that discuss extensions of the models presented
therein to cases where panel data are available.

5.2 Panel Data and Alternative Panel-Data Models

A panel dataset is a collection of observations on a set of random variables for a number of
groups , each one of which is observed over multiple time periods. Some examples of panel
datasets are the following:

� expenditure on different categories of goods for N households is observed monthly, over
a period of T months

� input and output quantities are observed annually for N firms and over a period of T
years
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� Gross Domestic Product (GDP) per capita, the aggregate savings rate, the population
growth rate and the rate of technological progress are observed annually for N countries
and over a period of T years

The unit of analysis in these three examples is, respectively, the household, the firm and the
country, and the term ‘group’ will be used to refer to this unit. Time represents the second
dimension of the panel. Typically, panel datasets consist of many groups (large N) and few
time observations per group (small T ), although this is not always the case. Panels for which
all groups are observed for the same number of time periods are called balanced , while when
the number of time observations varies by group the panel is said to be unbalanced .

Because a panel dataset has two dimensions, we will use a double subscript to refer to a
potential observation. For example, yit will be the value of a random variable for a potential
observation for group i and in period t. With this notation, the linear regression model with
panel data and independent Normally-distributed errors becomes:

yit = x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

(5.1)

Of course, this slight change in notation does not invalidate the procedure of estimating the
parameters of the model which was covered in Chapter 2. That is, one can disregard the panel
nature of the dataset and estimate the parameters by pooling together the time observations
across multiple groups. Such an approach amounts to estimating what is called the pooled
model . The real usefulness of panel data, however, comes from the possibilities it presents for
controlling for group-specific unobserved heterogeneity. To proceed with this point, suppose
that the phenomenon under question involves a stochastic model where the dependent variable
is determined by a set of time varying independent variables, x, as well as a set of time-invariant
independent variables, w:

yit = x′
itβ +w′

iγ + εit, εit ∼ N
(

0, 1
τ

)

(5.2)

where β is a K×1 of parameters associated with the time-varying variables and γ is a vector
of parameters associated with the time-invariant variables.1 If both x and w are observed,
then the pooled model can produce estimates of both β and γ. With the availability of panel
data, estimates of β can be obtained even if the time invariant variables are unobserved. By
defining αi ≡ w′

iγ as the unobserved group effect , the model above becomes:

yit = αi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

(5.3)

The group effects in this formulation become additional parameters, which can be estimated
given that there are multiple time observations for each unit, i. Two points deserve some
attention. First, by introducing the group effects into the model we are effectively controlling
for any group-specific/time-invariant characteristic that may affect the dependent variable,
whether these characteristics are observable or not. This is a very powerful result as it elimi-
nates the potential of omitting relevant time-invariant variables from the specification of the
model when drawing inferences about β. Second, because typical panel datasets consist of
many groups but have a short time dimension, the number of αis that need to be estimated
may become very large, while very little information is available (only T observations) to es-
timate each one of them. Two approaches to deal with this potential problem are usually
employed, one that imposes a hierarchical structure on the group effects and one that avoids
estimating them altogether.

The first approach assumes that the αis are independent from the variables in x and that
each one of them follows a Normal distribution with a common mean and precision ω. If the
set of independent variables includes a constant term, this model can be expressed as:

yit = αi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

(5.4)

where the group effect assumes the role of a unit-specific error term. Its mean can be restricted
to zero because any non-zero mean will be absorbed by the parameter associated with the

1Notice that w has only an i subscript because it does not vary over t.
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constant term in x. This hierarchical model is known in the frequentist econometrics literature
as the random-effects model, presumably because the group effects are treated as random
variables, which are drawn from a common distribution.

The second type of model treats the group effects as additional parameters to be estimated
and, for this reason the term used in the frequentist econometrics literature to describe it is the
fixed-effects model. Although rarely estimated in this form, this model would require placing
priors on β, τ and all αis. In a panel dataset with a short time dimension, the priors placed
on each αi can have a large impact on the results, because there is not enough information in
the data to dominate these priors. Furthermore, it takes a lot of effort to elicit appropriate
priors for all group effects, especially if the number groups is large. It is worth mentioning
here, however, that the advantage of of the fixed-effects over the random-effects model is that
it does not require the assumption that the group effects are independent of the variables in x.

Estimation of the αis can be avoided in the fixed-effects model by using a simple transfor-
mation of the data. Towards this end, let ȳi. be the sample mean over time of the dependent
variable for group i: ȳi. =

1
T

∑T
t=1 yit, and define x̄i. and ε̄i. accordingly. If (5.3) holds in the

population, then it should also hold:

ȳi. = αi + x̄′
i.β + ε̄i. (5.5)

This result is obtained simply by adding the T equations for group i by parts and dividing by
T . Finally, subtracting by parts (5.5) from (5.3) removes the group effects:

(yit − ȳi.) = (xit − x̄i.)
′
β + (εit − ε̄i.) (5.6)

By the properties of the Normal distribution, εit− ε̄i. also follows a Normal distribution, albeit
with a precision parameter which is a complex function of the original τ that appears in the
distribution of each εit. Therefore, β can be estimated using the same procedure as the one
used in the typical linear regression model, but with dependent and independent variables
constructed as deviations from the group means. Since there is nothing new in terms of
statistical procedures in this model, we will not cover it further in this chapter, except only in
the examples. We note, however, that this approach of removing the group effects relies heavily
on the assumption that each εit follows a Normal distribution and the results do not extend to
models where the error term has more elaborate structure (for example, in a stochastic-frontier
model).

Both fixed- and random-effects models are designed to deal with group-specific unobserved
heterogeneity that is due to time-invariant variables and which enters the model additively.
With multiple time observations per group, however, unobserved heterogeneity can be modeled
as entering in the form of group-specific slope parameters. In this context, the model becomes:

yit = z′itγi + εit, εit ∼ N
(

0, 1
τ

)

(5.7)

If the number of time observations per group is greater than the number of independent
variables in z, then the individual γis can be estimated by applying the procedure for estimating
the parameters of a linear regression model, in a group-by-group basis. Using such an approach,
however, is likely to magnify the problems that appear in the fixed-effects model: eliciting priors
for each γi and having limited information to estimate each γi in isolation. On the other hand,
the random-coefficients model imposes a hierarchical structure on the γis in a similar fashion
the random-effects model does on the αis. Compared to running N regressions separately, this
hierarchical structure allows information about γi to be transmitted from one group to the
other. A random-coefficients model can be estimated even when there are more independent
variables in the model than time observations per group because all groups contribute jointly
to the estimation of the parameters. The term used to describe this effect is borrowing of
strength.

However, we need to be careful regarding what constitutes a parameter in this model.
Because each γi is now a K×1 random vector, the typical assumption made is that γis are
draws from a multivariate-Normal distribution with common mean and precision matrix:

γi ∼ N
(

γ̄,Ω−1
)

(5.8)
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where γ̄ is a K×1 vector of parameters to be estimated andΩ is aK×K precision matrix, which

contains (K−1)K
2 +K unique parameters to be estimated. Estimation of the random-coefficients

model is deferred to the following section.
Before closing this section we note that the panel-data models presented above can be ap-

plied to datasets with no time dimension, as long as there is another natural way of grouping
the observations. For example, when modeling the profitability of a particular type of busi-
nesses, if data are available on individual businesses located in different countries, then the
country can assume the role of the group and the individual businesses the role of the time
dimension. A random-effects model in this context would control for unobserved heterogeneity
at the country level that is due to, for example, the entrepreneurial environment, exchange
rates, or any other variable that is the same for all businesses within a country.

5.3 Estimation of the Hierarchical Panel-Data Models

This section describes the estimation process of the two hierarchical panel-data models: random
effects and random coefficients. Estimation of the fixed-effects model is not covered here
because the procedure for estimating β from (5.6) is exactly the same as the one used for the
linear regression model. Furthermore, estimating the αis in the fixed-effects model by brute
force and not by transforming the data in deviations from the group means is something that
is rarely done in Bayesian econometrics. In the linear model with Normally-distributed error
both the random-effects and the random-coefficients models can be estimated by analytically
integrating the unobserved effects (αis or γis) from the likelihood. However, estimation by
data augmentation is much simpler and can be extended to models where the error term follows
more elaborate distributions and for this reason we will follow this approach here.

5.3.1 Estimation of the Random-Effects Model

The random-effects model takes the form:

yit = αi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

(5.9)

where xit is a K×1 vector of independent variables. We will assume that we have N groups
in the dataset and that each one of them is observed for T time periods. Extension to unbal-
anced panels is straightforward, but notation can become cumbersome. The parameters to be
estimated are β, τ and ω, while in a data-augmentation setting, the αis are the latent data.

The complete-data likelihood for the random-effects model is:

p
(

y, {αi}
∣

∣X,β, τ, ω
)

=

N
∏

i=1

[

T
∏

t=1

p
(

yit
∣

∣xit,β, τ, αi

)

]

× p
(

αi

∣

∣ω
)

=
τNT/2

(2π)
NT/2

exp

{

−τ

2

N
∑

i=1

T
∑

t=1

(yit − αi − x′
itβ)

2

}

× ωN/2

(2π)N/2
exp

{

−ω

2

N
∑

i=1

α2
i

}

(5.10)

where y and X are the vector and matrix of the dependent and independent variables, respec-
tively, stacked over both time observations and groups. The first factor in the complete-data
likelihood comes from the fact that each εit follows a Normal distribution and the second factor
is due to each αi following a Normal distribution with zero mean.

As in the linear regression model, we will use a multivariate-Normal prior for β and a
Gamma prior for τ . Furthermore, since ω is another precision parameter, we will use a Gamma
prior for it as well. By letting y∗ be the NT×1 vector of stacked values of yit −αi, it becomes
apparent that the full conditionals of β and τ are exactly the same as the ones presented in
Theorem 2.1, with y∗ taking the place of y. Similar transformations as the ones presented
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above the same Theorem can be used to show that the full conditional of ω is Gamma and
that the full conditional of each αi is Normal. These results are presented here in the form of
a theorem, before we move to an application of the fixed- and random-effects models to the
estimation of the aggregate production function.

THEOREM 5.1: Full Conditionals for the Random-Effects Linear Model
In the random-effects linear model with Normally-distributed error and group effects and
K independent variables:

yit = αi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

and with a Normal prior for β and Gamma priors for τ and ω:

p(β) =
|P|1/2

(2π)K/2
exp

{

−1

2
(β −m)

′
P (β −m)

}

,

p(τ) =
baτ
τ

Γ (aτ )
τaτ−1e−bττ and p(ω) =

baω
ω

Γ (aω)
ωaω−1e−bωω

the full conditional of β is Normal:

π (β|•) = |P̃|1/2

(2π)
K/2

exp

{

−1

2
(β − m̃)

′
P̃ (β − m̃)

}

and the full conditionals of τ and ω are Gamma:

π (τ |•) = b̃ãτ
τ

Γ (ãτ )
τ ãτ−1e−b̃ττ and π (ω|•) = b̃ãω

ω

Γ (ãω)
ωãω−1e−b̃ωω

where:
� P̃ = X′X+P and m̃β = (X′X+P)

−1
(X′y∗ +Pm)

� ãτ = NT
2 + aτ and b̃τ = 1

2 (y
∗ −Xβ)

′
(y∗ −Xβ) + bτ

� ãω = N
2 + aω and b̃ω = 1

2

N
∑

i=1

α2
i + bω

� y∗ is the NT×1 vector obtained by stacking y∗it = yit − αi over T and N

The full conditional of αi, i = 1, 2, . . . , N , is Normal:

π (αi|•) =
(τT + ω)

1/2

(2π)
1/2

exp

{

− (τT + ω)

2
(αi − m̃i)

2

}

where m̃i =
τ

τT+ω

∑T
t=1 (yit − xitβ)

� Example 5.1 Fixed and Random Effects in the Aggregate Production Function
In this example we will use the data from the Penn World Table (Feenstra et al., 2015) to estimate the
aggregate production function with fixed and random effects. The dataset contains annual information
on value added, capital and labor use and a time trend for the EU-15 Member States from 1970 to
2014. The unit of analysis here is the Member State and the panel is balanced because each group is
observed for 45 years.

We will assume that the aggregate production function is Cobb-Douglas and, for comparison
purposes, we will first consider the pooled model:

logYit = β1 + β2 logKit + β3 log Lit + β4trendit + εit, εit ∼ N
(

0, 1
τ

)

The results from the pooled model are presented in the following table.

http://www.rug.nl/ggdc/productivity/pwt/
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Mean Median Sd.dev. 5% 95%

constant 3.24514 3.24896 0.279077 2.784 3.69835
logK 0.583076 0.582767 0.0238982 0.544447 0.622634
logL 0.441425 0.441675 0.0225753 0.403951 0.477781
trend 0.00119668 0.00120461 0.000508724 0.000353659 0.0020245

tau 72.1455 72.0801 3.9129 65.778 78.7437
sigma e 0.117862 0.117787 0.00320426 0.112692 0.123302

The the slope coefficients in the fixed-effects model:

logYit = αi + β2 logKit + β3 log Lit + β4trendit + εit, εit ∼ N
(

0, 1
τ

)

can be estimated using BayES’ lm() function, after transforming the dependent and independent
variables by taking their deviations from their respective means. The results from this model are given
in the following table.

Mean Median Sd.dev. 5% 95%

dlogK 0.393942 0.393992 0.0333159 0.338807 0.448848
dlogL 0.563322 0.563276 0.0327412 0.509985 0.617021
dtrend 0.00489146 0.00489257 0.000855796 0.00348505 0.00630568

tau 176.757 176.619 9.69914 161.188 192.928
sigma e 0.0753014 0.0752457 0.00207175 0.0719966 0.0787679

Finally, BayES’ lm_re() function can be used to estimate the random-effects model:

logYit = αi + β2 logKit + β3 log Lit + β4trendit + εit, εit ∼ N
(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

These results appear in the following table.

Mean Median Sd.dev. 5% 95%

constant 5.21101 5.20963 0.383709 4.58129 5.84385
logK 0.419055 0.419135 0.0312374 0.36744 0.470369
logL 0.576326 0.576208 0.0293342 0.528282 0.624983
trend 0.00396158 0.0039528 0.000652133 0.00290387 0.00504271

tau 172.605 172.478 9.56803 156.993 188.641
omega 93.0941 87.6235 37.8641 41.6574 162.728

sigma e 0.0762035 0.076144 0.00212013 0.0728087 0.0798106
sigma alpha 0.110479 0.106834 0.0240874 0.0783917 0.154945

We can see in these results that the posterior means of the slope coefficients are quite similar in
the fixed- and random-effects models, but there are substantial differences from the pooled model.
Furthermore, the output elasticities with respect to capital and labor in the models that account for
group unobserved heterogeneity are closer to the 1

3
/ 2
3
split, suggested by economic theory, if factors of

production are compensated by their marginal products. As expected, the precision of the error term
increases considerably when moving from the pooled model to the models that account for unobserved
heterogeneity.

Bayes factors can be used to examine how well the data conform to the assumptions made by the
three models. It should be noted that the dependent variable in these models is not the same: the
fixed-effects used the deviations from the group means of log-output as the dependent variable, while
the other two models use log-output itself. However, we can view the fixed-effects model as having
logYit as the dependent variable, while the group means of log-output are treated as forming an
additional independent variable, associated with a coefficient equal to one. Running the fixed-effects
model in this format would generate the same value for the log-marginal likelihood. The results in the
following table indicate that data clearly favor the fixed-effects model.

Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

LM 442.739 Lewis & Raftery 0.333333 1.44989e-136
FE 755.519 Lewis & Raftery 0.333333 1
RE 702.433 Lewis & Raftery 0.333333 8.81473e-24
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The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data and transform the variables

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

// construct the constant term and take logs of inputs and output

Data.constant = 1; Data.logY = log(Data.Y);

Data.logK = log(Data.K); Data.logL = log(Data.L);

// declare the dataset as panel

set_pd(Year,CountryID);

// run a simple linear model

LM = lm(logY ∼ constant logK logL trend);

// run a fixed-effects model

Data.dlogY = Data.logY - groupmeans(logY);

Data.dlogK = Data.logK - groupmeans(logK);

Data.dlogL = Data.logL - groupmeans(logL);

Data.dtrend = Data.trend - groupmeans(trend);

FE = lm(dlogY ∼ dlogK dlogL dtrend);

// run a random-effects model

RE = lm_re(logY ∼ constant logK logL trend);

// compare the three models

pmp( { LM, FE, RE } );
✝ ✆

5.3.2 Estimation of the Random-Coefficients Model

The random-coefficients model takes the form:

yit = z′itγi + εit, εit ∼ N
(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1
)

(5.11)

where zit is a K×1 vector of independent variables and each γi is a K×1 vector of associated
group effects. As before, we will assume that we have N groups in the dataset and that each
one of them is observed for T time periods. While extension to unbalanced panels is again
straightforward, this comes at the cost much more complex notation. The parameters of the
model to be estimated are γ̄, Ω and τ . The γis represent the latent data, although they may
be of interest in some applications and estimates of them can be obtained as byproducts of the
Gibbs sampler.

The complete-data likelihood for the random-coefficients model is:

p
(

y, {γi}
∣

∣Z, γ̄,Ω, τ,
)

=

N
∏

i=1

[

T
∏

t=1

p
(

yit
∣

∣zit, τ,γi

)

]

× p
(

γi

∣

∣γ̄,Ω
)

=
τNT/2

(2π)
NT/2

exp

{

−τ

2

N
∑

i=1

T
∑

t=1

(yit − z′itγi)
2

}

× |Ω|N/2

(2π)NK/2
exp

{

−1

2

N
∑

i=1

(γi − γ̄)
′
Ω (γi − γ̄)

}

where y and Z are the vector and matrix of the dependent and independent variables, respec-
tively, stacked over both time observations and groups. The first factor in the complete-data
likelihood comes from the fact that each εit follows a Normal distribution and the second factor
is due to each γi following a multivariate-Normal distribution.

As in the random-effects model, we will use a multivariate-Normal prior for γ̄ and a Gamma
prior for τ . BecauseΩ is a precision matrix, we will place a Wishart prior on it, with degrees-of-
freedom parameter n and scale matrix V. All three priors are conjugate, while the derivations
of the full conditionals for γ̄ and τ follow similar steps as the ones used for the linear regression
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model. Deriving the full conditional of Ω requires transformations similar to the ones used in
SUR model. Finally, the full conditional of each γi is multivariate Normal and its derivation
is similar to the way the full conditional of β was derived in the linear regression model. We
present all these results in the form of a theorem, before moving on to apply the random-
coefficients model in estimating the aggregate production function.

THEOREM 5.2: Full Conditionals for the Random-Coefficients Linear Model
In the random-coefficients linear model with Normally-distributed error and group effects
and K independent variables:

yit = z′itγi + εit, εit ∼ N
(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1
)

(5.12)

and with a Normal prior for γ̄, a Wishart prior for Ω and a Gamma prior for τ :

p(γ̄) =
|P|1/2

(2π)K/2
exp

{

−1

2
(γ̄ −m)

′
P (γ̄ −m)

}

,

p(Ω) = |Ω|
n−K−1

2 |V−1|n/2

2nK/2ΓK(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

and p(τ) =
ba

Γ (a)
τa−1e−bτ

the full conditional of γ̄ is Normal:

π (γ̄|•) = |P̃|1/2

(2π)
K/2

exp

{

−1

2
(γ̄ − m̃)

′
P̃ (γ̄ − m̃)

}

the full conditionals of Ω is Wishart and the full conditional of τ is Gamma:

π (Ω|•) = |Ω|
ñ−K−1

2 |Ṽ−1|ñ/2

2ñK/2ΓK

(

ñ
2

) exp
{

− 1
2 tr

(

Ṽ−1Ω
)}

and π (τ |•) = b̃ã

Γ (ã)
τ ã−1e−b̃τ

where:

� P̃ = NΩ+P and m̃ = (NΩ+P)
−1

(

Ω
N
∑

i=1

γi +Pm

)

� ñ = N + n, Ṽ−1 = CC′ +V−1 and C =
[

γ1 − γ̄ γ2 − γ̄ . . . γI − γ̄
]

� ãτ = NT
2 + aτ and b̃τ = 1

2

N
∑

i=1

T
∑

t=1
(yit − z′itγi)

2
+ bτ

The full conditional of γi, i = 1, 2, . . . , N , is multivariate Normal:

π (γi|•) = |Ω̃i|1/2
(2π)K/2 exp

{

− 1
2 (γi − γ̃i)

′
Ω̃i (γi − γ̃i)

}

where:
� Ω̃ = τz′izi +Ω

� γ̃i = (τz′izi +Ω)
−1

(τz′iyi +Ωγ̄)

� yi and zi are the vector and matrix of the dependent and the independent variables,
respectively, for group i and stacked over the time dimension

� Example 5.2 Random Coefficients in the Aggregate Production Function
In this example we will keep using the data from the Penn World Table to estimate the aggregate
production function. As in the previous example, we will assume that the aggregate production function
is Cobb-Douglas, but that each country has each own vector of coefficients:

logYit = γ1i + γ2i logKit + γ3i log Lit + γ4itrendit + εit, εit ∼ N
(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1)

This model can be estimated in BayES using the lm_rc() function. The results are presented in the
following table.

http://www.rug.nl/ggdc/productivity/pwt/
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Mean Median Sd.dev. 5% 95%

constant 5.36874 5.64416 0.85051 3.57618 6.20717
logK 0.418731 0.401558 0.0658398 0.344499 0.555542
logL 0.49582 0.495558 0.0774272 0.369143 0.623302
trend 0.00537389 0.00532298 0.0105028 -0.0118546 0.0226852

tau 630.637 619.458 58.1705 550.6 740.025
sigma e 0.0399441 0.0401789 0.00179197 0.0367607 0.0426187

These results are slightly different from the ones produced by the other panel-data models. One
has to keep in mind, however, that the parameters reported in this table are the means of the output
elasticities, across all countries. Country-specific estimates of these elasticities can be obtained as a
byproduct of the Gibbs sampler. The following figure presents histograms of the posterior means of
the country-specific output elasticities. From this figure it is obvious that there is quite large variability
in these coefficients across countries.
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Apart from γ, the random-coefficients model contains additional parameters. The posterior mean
of Ω for this model is:

E (Ω|•) =









252.71951 28.404319 −40.135201 −0.50773612
28.404319 554.45376 65.313201 20.203856
−40.135201 65.313201 111.26204 14.386714
−0.50773612 20.203856 14.386714 738.18898









Finally, the Lewis and Raftery approximation of the log-marginal likelihood is 1004.268, which is
much larger than what the pooled, fixed-effects and random-effects models produced (see the results
in Example 5.1). Therefore, the data clearly favor the random-coefficients model.

Obtaining the results presented above using BayES can be achieved using the code in the following
box.

✞ ☎
// import the data and transform the variables

Data = webimport("www.bayeconsoft.com/datasets/PWT.csv");

// construct the constant term and take logs of inputs and output

Data.constant = 1; Data.logY = log(Data.Y);

Data.logK = log(Data.K); Data.logL = log(Data.L);

// declare the dataset as panel

set_pd(Year,CountryID);

// run a random-coefficients model

RC = lm_rc(logY ∼ constant logK logL trend);

// store the estimates of the country-specific coefficients

store( gamma_i, gamma_i_, "model" = RC );
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// plot histograms of the country-specific coefficients

myFigure = multiplot(2,2);

hist( subplot(myFigure, 1, 1), Data.gamma_i_constant,

"title" = "gamma_1i", "grid"="on" );

hist( subplot(myFigure, 1, 2), Data.gamma_i_logK,

"title" = "gamma_2i", "grid"="on" );

hist( subplot(myFigure, 2, 1), Data.gamma_i_logL,

"title" = "gamma_3i", "grid"="on" );

hist( subplot(myFigure, 2, 2), Data.gamma_i_trend,

"title" = "gamma_4i", "grid"="on" );

// print the posterior mean of Omega

print(RC.Omega);

// print the approximation to the log-marginal likelihood

print(RC.logML);
✝ ✆

5.4 Extensions to Other Panel-Data Models

Before closing this chapter we briefly discuss a few straightforward extensions to the hierarchical
models for panel data. We first consider a model which can be viewed as a hybrid between the
fixed- and the random-effects models and discuss along the way two approaches that account for
possible correlation of the group effects with the time-varying variables by including additional
independent variables. We next discuss extensions to the random-coefficients model, where
some parameters are common to all groups or where a more elaborate hierarchical structure is
imposed on the random coefficients.

5.4.1 Correlated Random Effects

Consider the original formulation of panel-data models:

yit = x′
itβ +w′

iγ + εit, εit ∼ N
(

0, 1
τ

)

(5.13)

where xit is a K×1 vector of time-varying and wi a vector of time-invariant independent vari-
ables. Both the fixed- and random-effects models provide ways for controlling for group-specific
unobserved heterogeneity, in case not all relevant time-invariant variables are observable. In
specific applications, however, some of these time-invariant variables may be observed and esti-
mating their associated coefficients may be a major objective of the analysis. Achieving this in
a random-effects setting is as simple as giving an alternative interpretation to the group effect:
let zi be an L×1 vector of observed time-invariant variables and δ an L×1 vector of parame-
ters associated with these variables. wi now represents a vector of unobserved time-invariant
variables, which can be linearly combined to form the group effect, αi. Thus, by estimating
the model:

yit = αi + x′
itβ + z′iδ + εit, εit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

(5.14)

one can produce estimates for the parameters associated with the time-varying variables, β, as
well as for the parameters associated with the observed time-invariant variables, δ, while at the
same time controlling for time-invariant unobserved heterogeneity. An additional assumption
is made in the background: the αis are independent of both the time-varying variables in x
and the observed time-invariant in z.

Although simple, this approach does not work in the fixed-effects model. This is because any
time-invariant variables, whether observed or unobserved, will drop from a model estimated in
deviations from the group means of the dependent and independent variables. An alternative
approach, first proposed by Mundlak (1978), uses random effects instead of transforming the
data, but expresses the group effects as a linear function of the the group means of the time-
varying variables, in an attempt to capture possible correlations between these effects and the
variables in x:

αi = x̄′
i.λ+ vi (5.15)
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where vi is a Normally-distributed error term. Substituting the last expression in (5.14) leads
to:

yit = vi + x̄′
i.λ+ x′

itβ + z′iδ + εit, εit ∼ N
(

0, 1
τ

)

, vi ∼ N
(

0, 1
ω

)

(5.16)

From this expression it becomes apparent that vi takes the place of αi in the typical random-
effects model, while we still need to assume that αi is uncorrelated with zi. Estimation of β
and δ is now feasible by random effects, at the cost of including K additional independent
variables in the model and having to estimate the associated parameters, λ. At the same
time, any correlation of the form expressed in (5.15) between the time-varying independent
variables and the αis is taken into account. This approach of casting a fixed-effects model
into a random-effects by including the group means as additional independent variables is
known as Mundlak’s approach. Mundlak (1978) shows that in a frequentist setting and for
the linear regression model only, running random effects on the augmented model produces
exactly the same point estimates for β. This result, however, does not hold exactly in a
Bayesian setting, because the posterior mean of β depends also on the priors placed on the
additional independent variables.

Chamberlain (1982, 1984) goes a step further and suggests expressing the original group-
specific effects as linear functions of the the time-varying variables for each group and in every
period:

αi = x′
i1λ1 + x′

i2λ2 + . . .+ x′
iTλT + vi (5.17)

where xit is a K×1 vector of the values of x for group i and in period t and λt is the associated
K×1 vector of coefficients. Substituting this expression in (5.14) and collecting terms leads to:

yit = vi +
∑

s6=t

x′
isλs + x′

it(β + λt) + z′iδ + εit, εit ∼ N
(

0, 1
τ

)

, vi ∼ N
(

0, 1
ω

)

(5.18)

The model is then estimated by random effects and the approach is known as Chamberlain’s
approach or correlated random effects , although the later term is frequently used also to describe
Mundlak’s approach.

Both specifications proposed by Mundlak and Chamberlain split the original group effects
into a part that is correlated with the time-varying variables and a part that is not, while the
uncorrelated part assumes the role of the unobserved-heterogeneity component in a random-
effects model. Both approaches include additional observed independent variables in the model
and, especially Chamberlain’s approach, can lead to a proliferation of parameters and, if there
is limited variability over time in the variables in x, to severe multicollinearity problems.
Additionally, they require that any observed time-invariant variables included in the model are
independent of the αis; otherwise δ will capture, apart from the effect of the variables in w
on y, also part of the effect of the unobserved time-invariant variables. The two approaches
are particularly useful, however, outside the linear regression model, where a transformation
of the data in deviations from group means, as the fixed-effects model requires, makes the
distribution of the resulting error term intractable. In such a setting, usually the issue is not
one of estimating the parameters associated with time-invariant variables, but allowing the
group effects to be correlated with the time-invariant variables.

5.4.2 Models with Group-Specific and Common Coefficients

The random-coefficients model:

yit = z′itγi + εit, εit ∼ N
(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1
)

(5.19)

captures unobserved heterogeneity by allowing the coefficients associated with the time-varying
independent variables to vary by group. In a model with many independent variables, however,
the number of parameters to be estimated may become very large. This is because Ω needs
to be estimated along with γ̄ and the number of unique elements in Ω is a quadratic function
of the number of independent variables. Furthermore, the resulting group-specific γis may
be unrealistic if the number of time observations per group is small relative to the number of
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independent variables. To put it differently, a random-coefficients model may be too flexible
to allow reasonable inferences to be drawn about γ̄ if all coefficients are group specific.

An obvious remedy to this issue is to restrict some of the independent variables in large
models to be common to all groups. The model then becomes:

yit = z′itγi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1
)

(5.20)

where xit is an L×1 vector of independent variables which are associated with a parameter
vector, β, which is common to all is. The way of splitting the set of independent variables
into those associated with group-specific coefficients and those associated with common pa-
rameters should be motivated by economic theory and may not always be obvious. In general,
group-specific coefficients are reserved for variables whose impact on the dependent variable is
expected to differ substantially among groups, given their unobserved characteristics.

The parameters to be estimated in this model are, γ̄, Ω and τ , as in the basic random-
coefficients model, plus β, and this presents a natural blocking for the Gibbs sampler. Deriving
the full conditionals of the four blocks is straightforward. The only thing that is required is to
replace yit by yit − x′

itβ in the full conditional for γi, by yit − z′itγi in the full conditional of
β in the typical linear regression model, and use the complete residual, yit − z′itγi − x′

itβ, in
the full conditional of τ .

5.4.3 Random-Coefficients Models with Determinants of the Means

The random-coefficients model introduces flexibility into the model but also allows for “bor-
rowing of strength” by imposing a hierarchical structure on the γis. The assumption that we
maintained until now in this model is that each γi is a draw from a multivariate-Normal dis-
tribution with common mean, γ̄. It is feasible, however, to allow this mean to be different for
different groups by specifying it as a linear function of time-invariant variables and additional
parameters to be estimated. More formally, the structure imposed on γi becomes:

γi ∼ N
(

Wiξ,Ω
−1
)

(5.21)

where Wi is a matrix constructed by the variables which affect the mean of the γis and ξ

contains the associated parameters, both of them taking the form described below equation
(3.3), in the SUR model. This specification can, alternatively, be expressed as:

γi = Wiξ + ui, ui ∼ N
(

0,Ω−1
)

(5.22)

where the similarities to the SUR model become apparent. As such, no additional work is
required to derive the full conditionals of the parameters for this hierarchical model: the full
conditional of τ is the same as in the typical random-coefficients model and the full conditionals
of ξ and Ω are the ones presented in Theorem 3.1, with γi assuming the role of yi, Wi that
of Xi and ξ that of β. Finally, the full conditional of each γi is the same as in the typical
random-coefficients model, with Wiξ replacing γ̄.

5.5 Synopsis

This chapter covered the basic panel-data models in the context of the linear regression model.
After motivating the use of panel-data models as a way of accounting for group-specific un-
observed heterogeneity, we made the distinction between fixed-effects, random-effects and
random-coefficients models. The parameters of the fixed-effects model which are common to
all groups can be estimated simply by transforming the dependent and independent variables
to deviations from their respective group means and using the procedure discussed in Chapter
2. Data augmentation was used for the estimation of the two hierarchical models, where the
full conditionals of the models’ parameters were found to be very similar to the ones coming
from the linear regression and SUR models. Finally, three straightforward extensions to the
basic panel-data models were discussed: correlated random effects using Mundlak’s and Cham-
berlain’s approach, models with both group-specific coefficients and parameters common to all
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groups and random-coefficients models where the mean vector of the group-specific coefficients
was itself expressed as a function of independent variables and parameters.

Apart from the fixed-effects model which, in deviations from group means, works only in
the linear model with Normally-distributed error, the use of the other panel-data approaches
presented in this chapter extends to models with more elaborate structures in the error term. As
it will become apparent in the following chapters, extending non-linear models such that they
accommodate group effects is relatively easy. One of the major advantages of the Bayesian
approach to statistical inference is that, when coupled with data augmentation, increasing
model complexity can be handled by artificially including latent data (group effects in the
context of panel-data models) and then integrating them out by simulation.
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Chapter 6

Models for Binary Response

6.1 Overview

This chapter introduces the simplest models that can be used to draw inferences in problems
where the response variable is qualitative. In particular, it deals with models which can be
used to determine the probability of the response variable being true or false and which are,
therefore, appropriately called models for binary response. Because the response variable in
such models is qualitative, any numerical values used to code the two states it can be in are
arbitrary. This creates some complications for statistical analysis, which always has to rely
on numerical data. Instead of modeling the response variable directly, binary-response models
specify the probability of this variable being true. Since this probability is unobserved, a new
conceptual device is required to estimate the models’ parameters, as well as to interpret their
results.

There are a few alternative, yet equivalent, representations of binary-respose models, some
of which are useful for estimating the models’ parameters, while others facilitate interpretation
of the results. After defining formally what a binary-response model is, the statistical formu-
lation is presented in the following section. Binary-response models can be given an economic
interpretation within the random-utility framework. This task is taken up in Subsection 6.2.1.
Estimation of the most popular models for binary choice, Probit and Logit models, is covered
in Section 6.3 and the section that follows deals with the calculation and interpretation of
marginal effects from such models. Section 6.5 extends the binary-response models to accom-
modate panel data, while Section 6.6 provides an extension to multivariate binary-response
models.

The models covered in this chapter form the basis for more complex statistical models in
which the response variable is qualitative and it can be in one out of multiple possible states.
These models are covered in the following chapter, as they present additional complications,
both in terms of interpretation of the results and in terms of estimation.

6.2 The Nature of Binary-Response Models

Binary-response or binary-choice models are used to draw inferences in problems where the
response variable is qualitative and it can be in one of two states: true or false. In this
type of problems interest revolves around the probability of occurrence of a specific economic
phenomenon, corresponding to the response variable being true, as well as on the effects that
any relevant factors may have on this probability. Typically, and for mathematical convenience,

91
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the response variable is coded such that occurrence of the phenomenon under investigation is
indicated by a value of one, while non-occurrence by zero. Oftentimes, the term “success” is
associated with the occurrence of the phenomenon and “failure” with non-occurrence.

A few examples on which binary-response models can be applied to quantify the probability
of success are the following:

� a customer buys a specific brand of milk during a visit to the grocery store (success) or
not (failure)

� a household owns the house it resides in (success) or not (failure)

� an individual is employed (success) or unemployed (failure)

� an economy experiences unemployment rate greater than 10% in a given year (success)
or not (failure)

As it is the case in almost all econometric models, the researcher is rarely interested only in
estimating the probability of occurrence of a phenomenon. Rather, quantifying the magnitude
of the causal effect of relevant economic variables on this probability is of primary importance.
Such a causal relationship can be expressed, in general terms, as y = f(x1, x2 . . . , xK), where
y is the response variable and which can be equal to either zero or one and x1, x2 . . . , xK are K
independent variables that drive y. This causal relationship can be expressed mathematically
once numbers are used to code the values of y. However, the mapping of the two states of
the response variable to numerical values is largely arbitrary: we could equally well choose
values other than one and zero to code the true/false states of the response variable and still
communicate the same information about its state.

To circumvent these issues, instead of attempting to determine the value of the dependent
variable directly, binary-response models specify the probability of success, conditional on the
values of the independent variables. Formally, the quantity being modeled is Prob(y = 1|x),
where x is a K× 1 random vector constructed by the K independent variables. To use a
formulation similar to the linear regression model, define pi as Prob(yi = 1|xi) for a poten-
tial observation, i. If pi were observable then we would be able to specify and estimate the
parameters of a model in the form:

pi = x′
iβ + εi (6.1)

In practice, however, only yi can be observed, not pi. Nevertheless, the observed yi depends
heavily on the unobserved pi and this dependence is precisely what discrete-response models
exploit. Assuming that y is coded such that yi=1 whenever the economic phenomenon under
investigation occurs and yi =0 whenever it does not, yi follows a Bernoulli distribution with
probability mass function:

p(yi) = pyi

i · (1− pi)
1−yi (6.2)

This expression implies that yi is equal to one with probability pi and equal to zero with
probability 1−pi.

With the connection between yi and pi revealed, we could proceed by inserting the spec-
ification of pi from (6.1) into (6.2) and deriving the likelihood function. We should keep in
mind, however, that pi is a probability and it needs to be restricted on the unit interval for any
possible value of x′

iβ. A convenient way to achieve this is to use a monotonically-increasing
function, F (·), which is defined on the real line and its range is the unit interval. We can then
specify:

pi = F (x′
iβ) (6.3)

F (·) is known as the index function. Inserting pi from the last expression into (6.2) and
assuming that potential observations are independent from each other leads to the likelihood
function:

p(y|X,β) =
N
∏

i=1

[

F (x′
iβ)

]yi
[

1− F (x′
iβ)

]1−yi
(6.4)
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where y is the N ×1 vector that stores the values (0 or 1) of the response variable for N
potential observations and X is the N×K matrix that stores the corresponding values of the
independent variables.

Specification of the likelihood function is still incomplete because we have not yet chosen
the form of the index function, which is used to map x′

iβ onto the unit interval. The only
requirements for this function are that: (i) its domain is (−∞,+∞), (ii) its range is [0, 1]
and (iii) it is monotonically increasing. Although one could think of many possible functions
that satisfy these three requirements, the two functions that are used almost exclusively in ap-
plied research are the cumulative density function of a standard-Normally distributed random
variable:

Φ (x′
iβ) =

x′

iβ
∫

−∞

1√
2π

exp

{

− t2

2

}

dt (6.5)

and the cumulative density function of a standard-Logistically distributed random variable:

Λ (x′
iβ) =

1

1 + e−x′

iβ
=

ex
′

iβ

1 + ex
′

iβ
(6.6)

These two choices give rise, respectively, to the binary Probit and Logit models. Because the
cumulative probability density function of a standard-Logistically distributed random variable
is available in closed form, the likelihood in (6.4) is simple to evaluate for any given β. This
made Logit the model of choice when computers were too slow to accurately approximate the
value of Φ (x′

iβ), which is not available in closed form. With the increase of computing power
in the last few decades, however, this issue became immaterial and the Probit model became
the most prominent device for modeling binary response variables.

Notice that when moving from (6.1) to (6.3) we dropped the error term, εi. This is be-
cause, by modeling the probability of the response variable being true (rather than modeling yi
directly), the model already accounts for noise: the value of yi is random even if pi is determin-
istic and there is no need for another error term in the model. This becomes apparent when
using the latent-variable representation of a binary-choice model. This formulation presents an
alternative way of dealing with the complications arising from having to model a qualitative
variable. It works by introducing a continuous unobserved variable, y∗i , whose value determines
whether the observed response variable, yi, is equal to zero or one in the following way:

y∗i = x′
iβ + εi

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

(6.7)

In this representation y∗i can assume any real value and is determined by the values of the
independent variables and the associated parameters, while εi is there to capture statistical
noise. The first expression in (6.7), therefore, resembles a typical linear regression model.
Because only yi is observed, we cannot estimate the model’s parameter without relying on
the relationship between y∗i and yi. Given the specification of this relationship and because
y∗i is a random variable, we can only make probabilistic statements about the value of yi. In
particular:

Prob
(

yi = 1
∣

∣xi

)

= Prob
(

y∗i > 0
∣

∣xi

)

= Prob
(

εi > −x′
iβ
∣

∣xi

)

= 1− Prob
(

εi ≤ −x′
iβ
∣

∣xi

)

(6.8)

To proceed, let F (·) be the cumulative density function of εi. If this function is such that the
probability density function of εi, F

′(·), is symmetric around zero, then 1−F (z) = F (−z) for
all real z. Thus:

Prob
(

yi = 1
∣

∣xi

)

= F (x′
iβ) (6.9)
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which is exactly what was specified in (6.3). Therefore, if we assume that εi follows a standard-
Normal distribution, then the latent-variable representation leads to the Probit model, while
if εi follows a standard Logistic distribution we obtain the Logit model.1

A slight difference between the two formulations of the statistical model remains: the first
formulation uses either the standard-Normal or standard-Logistic distribution function, while
in the second formulation only the mean of these distributions needs to be restricted to zero. Is
the second formulation more flexible, given that we do not have to restrict the scale parameter
of εi to one? Suppose that we allow this scale parameter, σ2, to be different from one. Then:

Prob
(

yi = 1
∣

∣xi

)

= Prob
(

εi ≤ x′
iβ
∣

∣xi

)

= Prob

(

εi
σ

≤ x′
iβ

σ

∣

∣

∣

∣

xi

)

(6.10)

Because εi/σ has a standardized distribution, the conditional probability of success is equal
to the standard-Normal or standard-Logistic cumulative density function, evaluated at x′

iβ/σ.
This makes apparent that multiplying β and σ by any real number, z, the cumulative density
function of the standardized distribution will return exactly the same value for the combination
(zβ, zσ) as for the combination (β, σ). In other words, there is an infinite number of param-
eters that produce exactly the same probability of success and, therefore, β and σ cannot be
identified separately. There are a few different approaches for solving this non-identification
problem, but the one employed most frequently in practice is to restrict σ to unity. In this
way, εi is restricted to follow either a standard-Normal or standard-Logistic distribution and
the two formulations of binary-response models are equivalent.

6.2.1 Random Utility: An Underlying Framework for Binary Choice

The two alternative formulations of binary-response models presented above deal with the
problem of having to specify how a qualitative variable is determined in the population, pri-
marily, from a statistical/technical perspective. Although departing from different starting
points, both of them provide the same solution. Because they concentrate only on the techni-
cal aspects, however, these approaches are devoid of any economic meaning. For example, in
a problem where the objective is to uncover the factors that determine whether a consumer
buys a specific product or not, binary-choice models prescribe that the relevant quantity to
be modeled is the probability of buying the product, but provide no guidance on which fac-
tors may be relevant. The random-utility framework is a conceptual device that connects the
statistical formulations of the problem with economic theory. This framework is particularly
useful when analyzing individual decisions, such as consumer choices.

To make things concrete, suppose that consumer i faces the decision of whether to buy a
product or not. The utility that this consumer derives from purchasing the product or not is
assumed to be a function of her characteristics, as well as of the characteristics of the product:

u∗
1i = x′

iγ1 + ǫ1i (6.11)

if she buys the product, and:

u∗
0i = x′

iγ0 + ǫ0i (6.12)

if she does not.2 A rational consumer would be maximizing utility and, thus, purchase the
product if u∗

1i > u∗
0i. We may assume that the consumer knows with certainty which option

leads to higher utility or even know exactly how much utility she derives from each option.
However, the mechanism that determines the values of u∗

0i and u∗
1i is not precisely known to

the researcher. The two error terms are added to the assumed process that determines the
utility levels to capture statistical noise and, due to this noise, we can only make probabilistic

1Notice that when the mean of the Normal or Logistic distribution is zero, the corresponding probability
density function is symmetric around zero, as required by the argument made here.

2We use a star as a superscript on the utility levels because these are not unobservable. We will continue
using such a superscript to denote unobserved quantities in this and the following chapters.
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statements about whether the consumer will purchase the product or not. The probability of
the consumer buying the product is:

Prob
(

u∗
1i > u∗

0i

∣

∣xi

)

= Prob
(

x′
i (γ1−γ0) + (ǫ1i−ǫ0i) > 0

∣

∣xi

)

= Prob
(

x′
iβ + εi > 0

∣

∣xi

)

= Prob
(

εi > −x′
iβ
∣

∣xi

)

(6.13)

where β≡ γ1−γ0 and εi ≡ ǫ1i−ǫ0i. With these definitions we have reached the same result
presented in (6.8). Thus, the random-utility framework leads to the latent-variable representa-
tion of the model, with the latent variable, y∗i , being the difference in the utility the consumer
derives from buying the product and from not buying: y∗i ≡ u∗

1i−u∗
0i. Furthermore, if we

assume that the two error terms are Normally distributed, then so is εi and we obtain the
Probit model. To get the Logit model we need to assume that ǫ1i and ǫ0i are independent of
each other and each one follows a type I extreme-value distribution.3

The random-utility framework presents a way of incorporating the assumption of rational
consumers and utility-maximizing behavior into binary-choice models. Once this is done, the
researcher has some guidance on which consumer characteristics or product attributes may
be important in determining the decision to buy or not. This framework also suggests why
we need to restrict the scale parameter of the error term to unity: utility is measured on an
ordinal scale and the only thing that matters for the decision to purchase the product or not
is whether u∗

1i > u∗
0i, not the absolute levels of u∗

1i and u∗
0i. In particular, multiplying both

utility values by the same positive constant will preserve this inequality. This constant will
also rescale the error term and, thus, we can implicitly pick the scaling constant’s value such
that the scale parameter of εi is equal to one.

6.3 Estimation of Binary-Response Models

There are two alternative approaches for estimating the parameters of binary-response models,
one that is based on the likelihood function presented in (6.4) and one that is based on the
latent-variable formulation presented in (6.7). The first of these approaches views the model
as a generalized linear model :

g (µi) = x′
iβ (6.14)

where µi is the expected value of the dependent variable and g (·) is the associated link func-
tion. In binary-response models and when the response variable is coded as 0/1, yi follows a
Bernoulli distribution and its expected value is simply the probability of success, pi. Going back
to (6.3), we see that pi is specified as a monotonically increasing function of x′

iβ and, there-
fore, the inverse of the link function is the cumulative density function of a standard-Normally
or standard-Logistically distributed random variable, respectively, for the Probit and Logit
models. Viewing the models through the generalized-linear-model lens allows using a general
approach for drawing inferences in these models.4 Although useful for binary-response mod-
els, this approach cannot be easily extended to accommodate more complex discrete-response
models.

The latent-variable representation, on the other hand, makes the models amenable to esti-
mation by data augmentation and no new concepts or results need to be developed. More im-
portantly, estimation via data augmentation scales well when more complex discrete-response

3The probability density and cumulative density functions of a random variable that follows a type I extreme-

value distribution are, respectively, p(z) = e−ze−e−z
and P(z) = e−e−z

. The random variable that is obtained
as the difference of two independent type-I extreme value distributed random variables follows a standard-
Logistic distribution. To show this, suppose that Z and W are two random variables that follow the type I
extreme-value distribution and let U=Z−W . Then, the cumulative density function of U is:

Prob(U<u)=

∞
∫

−∞

Prob(U<u|w)p(w) dw=

∞
∫

−∞

P(u+w) p(w) dw=

∞
∫

−∞

e−w−e−w(1+e−u) dw=
eu

1 + eu

which is the cumulative density function of a standard-Logistically distributed random variable.
4See chapter 16 in Gelman et al. (2013) for a concise overview of generalized linear models.
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models are considered in the following chapter. For these reasons, only the latter approach will
be covered in this section. Estimation of the Probit and Logit models is covered separately in
the following two subsections.

6.3.1 Estimation of the Binary Probit Model

Consider the latent-variable representation of the Probit model:

y∗i = x′
iβ + εi, εi ∼ N(0, 1)

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

(6.15)

Naturally, in a data-augmentation setting yi assumes the role of the observed data for ob-
servation i and y∗i the latent data for the same observation. The contribution of a potential
observation i to the complete-data likelihood is p(yi, y

∗
i |xi,β) = p

(

yi
∣

∣y∗i
)

× p(y∗i |xi,β). Given
that εi follows a standard-Normal distribution, the second factor in this expression is:

p(y∗i |xi,β) = (2π)
−1/2

exp
{

− 1
2 (y

∗
i − x′

iβ)
2
}

(6.16)

Although the latent-variable representation of the binary Probit model explicitly specifies
the relationship between yi and y∗i , expressing p

(

yi
∣

∣y∗i
)

in a single-line formula is necessary for
deriving an expression for the complete-data likelihood function. There are a few alternative
ways of doing this, but a convenient one is the following:

p
(

yi
∣

∣y∗i
)

= 1(y∗i >0)yi ·1(y∗i ≤0)1−yi (6.17)

where 1(·) is the indicator function. Let’s spend a few moments to see how this expression
works. First of all, this expression looks like the probability mass function of a Bernoulli-
distributed random variable (yi in our case), with probability of success equal to 1(y∗i >0).
But when y∗i >0 this probability becomes equal to one and the value of yi is guaranteed to be
equal to one. On the other hand, when y∗i ≤ 0 the probability of success is equal to zero and
the value of yi is guaranteed to be equal to zero as well.

Finally, with N independent observations, the complete-data likelihood function becomes:

p
(

y,y∗∣
∣X,β

)

=

N
∏

i=1

[

1(y∗i >0)
yi ·1(y∗i ≤0)

1−yi×(2π)
−1/2

exp
{

− 1
2 (y

∗
i −x′

iβ)
2
}]

(6.18)

where y and y∗ are N × 1 vectors that store the values of the observed and latent data,
respectively, and X is the N×K matrix that stores the values of the independent variables for
these observations.

All parameters of the binary Probit model are contained in β. As we have done until now
for slope coefficients, we will place a multivariate-Normal prior on β, with mean vector m and
precision matrix P. A standard application of Bayes’ theorem leads to the following posterior
density for β and the latent data:

π
(

β,y∗∣
∣y,X

)

∝ p
(

y,y∗∣
∣X,β

)

p(β)

=

N
∏

i=1

[

1(y∗i >0)
yi ·1(y∗i ≤0)

1−yi×(2π)
−1/2

exp
{

− 1
2 (y

∗
i −x′

iβ)
2
}]

× |P|1/2

(2π)
K/2

exp
{

− 1
2 (β −m)

′
P (β −m)

}

(6.19)

In deriving the full conditional of β we first need to drop all terms from the posterior
density that do not involve β and which enter the function multiplicatively. Doing so results
in a full conditional that has the same form as the one we encountered in the linear regression
model:

π (β|•) ∝ exp
{

− 1
2 (y

∗−Xβ)
′
(y∗−Xβ)

}

× exp
{

− 1
2 (β −m)

′
P (β −m)

}

(6.20)
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The only difference from the expression in (2.13) for the linear regression model is that τ , the
precision parameter of the error term, is now restricted to be equal to one. Following exactly
the same steps as the ones bellow equation (2.13) leads to the full conditional of β being

a multivariate-Normal density with mean (X′X+P)
−1

(X′y∗ +Pm) and precision matrix
X′X+P.

The task of deriving the full conditional of the latent data may appear daunting at first,
mainly due to the peculiar-looking first factor in the expression:

π (y∗i |•) ∝ 1(y∗i >0)
yi ·1(y∗i ≤0)

1−yi×(2π)
−1/2

exp
{

− 1
2 (y

∗
i −x′

iβ)
2
}

(6.21)

However, one has to keep in mind that the full conditional of y∗i is also conditional on the
observed yi and information on its value leads to great simplifications. In particular, if yi = 1
then the first factor becomes 1 (y∗i >0) and the full conditional of y∗i is a Normal density with
mean x′

iβ and precision one, truncated from below at zero. A similar argument in the case
where yi = 0 shows that the only difference in the full conditional of y∗i is that the Normal
density is now truncated at zero from above.

These results are presented below in the form of a theorem. An application of the binary
Probit model to determining the probability of an individual being a member of a trade union
follows in Example 6.1.

THEOREM 6.1: Full Conditionals for the Binary Probit Model
In the binary-Probit model with K independent variables:

y∗i = x′
iβ + εi, εi ∼ N(0, 1)

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

and with a Normal prior for β:

p(β) =
|P|1/2

(2π)K/2
exp

{

−1

2
(β −m)′ P (β −m)

}

the full conditional of β is Normal:

π (β|•) = |P̃|1/2

(2π)
K/2

exp

{

−1

2
(β − m̃)′ P̃ (β − m̃)

}

where:

� P̃ = X′X+P
� m̃ = (X′X+P)

−1
(X′y∗ +Pm)

The full conditional of y∗i , i = 1, 2, . . . , N , is Normal, truncated from below or above
at zero, depending on the value of yi:

p
(

y∗i
∣

∣•
)

=







1
(2π)1/2

exp
{

− 1
2 (y

∗
i − x′

iβ)
2
}

1(y∗i > 0) if yi = 1

1
(2π)1/2

exp
{

− 1
2 (y

∗
i − x′

iβ)
2
}

1(y∗i ≤ 0) if yi = 0

� Example 6.1 Union Membership
In this example we will use a panel dataset of young males who lived in the Netherlands for the years
covered by the data (1980-87). The data were originally collected in the context of the Dutch National
Longitudinal Survey and were compiled and first used in this form by Vella & Verbeek (1998). The
part of the dataset that we will use here contains annual information on 545 individuals, each one
observed for 8 years, on the following variables:
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union : indicator variable: 1 if the individual reported that his wage was set in a collective
bargaining agreement in the year under question

hours : number of hours worked during the year (in thousands)
married : dummy variable: 1 if the individual is married
black : dummy variable: 1 if the individual is black
hisp : dummy variable: 1 if the individual is Hispanic

health : dummy variable: 1 if the individual has a health disability

Our objective is to model the probability of an individual’s wage being set in a collective bargaining
agreement. We will, for now, ignore the panel nature of the data and assume that this probability is
equal to the standard-Normal cumulative density function, evaluated at a linear combination of the
individual’s characteristics and the associated coefficients:

Prob(unioni = 1) = Φ (β1 + β2hoursi + β3marriedi + β4blacki + β5hispi + β6healthi)

where i is used to index observations across both individuals and time. These assumptions lead to a
Probit model and by using BayES’ probit() function, we obtain the results in the following table.

Mean Median Sd.dev. 5% 95%

constant -0.506081 -0.506252 0.0854881 -0.64798 -0.365264
hours -0.167226 -0.167187 0.038776 -0.231133 -0.10355
married 0.196219 0.196309 0.0436326 0.124272 0.26797
black 0.490516 0.490638 0.0629497 0.38709 0.594179
hisp 0.189867 0.190251 0.0575819 0.0946097 0.28406
health -0.459651 -0.457347 0.19373 -0.779257 -0.146054

From these results we can conclude that the number of hours worked by an individual, as well as
the individual having a health disability, reduce the probability of his wage being set in a collective
bargaining agreement. On the other hand, being married, black or Hispanic has a positive effect on
this probability. Because the probability is modeled as a non-linear function of these characteristics,
we can only interpret the signs, but not the magnitudes of the estimates.

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/UnionMembership.csv");

// generate a constant term

Data.constant = 1;

// run the Probit model

Probit = probit( union ∼ constant hours married black hisp health );
✝ ✆

6.3.2 Estimation of the Binary Logit Model

The latent-variable representation of the binary Logit model:

y∗i = x′
iβ + εi, εi ∼ Logistic (0, 1)

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

(6.22)

differs from the binary Probit model only in the distributional assumption imposed on the
error term. Therefore, derivation of the complete-data likelihood follows along the same lines.
With N independent observations, the complete-data likelihood function is:

p
(

y,y∗∣
∣X,β

)

=
N
∏

i=1

[

1(y∗i >0)yi ·1(y∗i ≤0)1−yi× ey
∗

i −x′

iβ

(

1 + ey
∗

i −x′

iβ
)2

]

(6.23)

where the second factor inside the square brackets is the probability density function of a
Logistically-distributed random variable, y∗i , with mean x′

iβ and scale parameter equal to one.
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Placing a multivariate-Normal prior on β, with mean vector m and precision matrix P and
applying Bayes’ theorem leads to the following posterior density:

π
(

β,y∗∣
∣y,X

)

∝ p
(

y,y∗∣
∣X,β

)

p(β)

=

N
∏

i=1

[

1(y∗i >0)
yi ·1(y∗i ≤0)

1−yi× ey
∗

i −x′

iβ

(

1 + ey
∗

i −x′

iβ
)2

]

× |P|1/2

(2π)
K/2

exp

{

−1

2
(β −m)

′
P (β −m)

}

(6.24)

The assumption of a Logistically-distributed error term has severe implications for the full
conditional of β. In particular, after dropping terms that enter the complete-data likelihood
multiplicatively and which do not involve β, this full conditional becomes:

π (β|•) ∝
N
∏

i=1

[

ey
∗

i −x′

iβ

(

1 + ey
∗

i −x′

iβ
)2

]

× exp

{

−1

2
(β −m)′ P (β −m)

}

(6.25)

and can hardly be simplified any further. The posterior density of β does not belong to any
known parametric family and we cannot sample directly from it. A random-walk Metropolis-
Hastings approach is, nevertheless, still feasible.

These results are presented below in the form of a theorem. The binary Logit model is
then applied to the problem of determining the probability of union membership, examined in
Example 6.1.

THEOREM 6.2: Full Conditionals for the Binary Logit Model
In the binary-Logit model with K independent variables:

y∗i = x′
iβ + εi, εi ∼ Logistic (0, 1)

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

and with a Normal prior for β:

p(β) =
|P|1/2

(2π)K/2
exp

{

−1

2
(β −m)′ P (β −m)

}

the full conditional of β is:

π (β|•) ∝
N
∏

i=1

[

ey
∗

i −x′

iβ

(

1 + ey
∗

i −x′

iβ
)2

]

× exp

{

−1

2
(β −m)′ P (β −m)

}

The full conditional of y∗i , i = 1, 2, . . . , N , is Logistic, truncated from below or above at
zero, depending on the value of yi:

p
(

y∗i
∣

∣•
)

=











ey
∗

i −x
′

iβ
(

1+ey
∗

i
−x

′

i
β
)21(y∗i > 0) if yi = 1

ey
∗

i −x
′

iβ
(

1+ey
∗

i
−x

′

i
β
)21(y∗i ≤ 0) if yi = 0

� Example 6.1 Union Membership (Continued)
We will use here again the data from Vella & Verbeek (1998) to model the probability of an individ-
ual’s wage being set in a collective bargaining agreement. This time, however, we will assume that
this probability is equal to the standard-Logistic cumulative density function, evaluated at a linear
combination of the individual’s characteristics and the associated coefficients:

Prob(unioni = 1) = Λ (β1 + β2hoursi + β3marriedi + β4blacki + β5hispi + β6healthi)
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which leads to the Logit model. The results obtained using BayES’ logit() function to estimate this
model are presented in the following table.

Mean Median Sd.dev. 5% 95%

constant -0.837459 -0.840063 0.145692 -1.07483 -0.602593
hours -0.276154 -0.276099 0.0639649 -0.380458 -0.168628
married 0.339109 0.339522 0.0729668 0.221854 0.461872
black 0.825599 0.823883 0.104185 0.65558 0.998639
hisp 0.323381 0.322948 0.0973918 0.166631 0.485795
health -0.833753 -0.82473 0.362296 -1.42905 -0.266384

From these results we can see again that the number of hours worked by an individual and the
individual having a health disability, reduce the probability being modeled, while being married, black
or Hispanic increase this probability. The signs of the parameter estimates are the same as in the binary
Probit model, but their magnitudes are very different. This, however, should be expected: the Probit
and Logit models make different assumptions on the functional form of the relationship between the
probability and the independent variables and, for this reason, the parameters are not comparable in
terms of magnitude.

Obtaining the results presented above using BayES can be achieved using the code in the following
box.

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/UnionMembership.csv");

// generate a constant term

Data.constant = 1;

// run the Logit model

Logit = logit( union ∼ constant hours married black hisp health );
✝ ✆

6.4 Interpretation of Parameters and Marginal Effects

The response variable in a binary-response model is qualitative and, for mathematical conve-
nience, is coded as 0 or 1. However, the quantity actually being modeled is the probability of
the response variable being equal to one. The relationship between this probability and the
model’s independent variables is non-linear and, for this reason, the magnitude of the param-
eters cannot be interpreted directly. Nevertheless, their signs can and this is because function
F (·) that projects x′

iβ from the real line onto the unit interval is monotonically increasing.5

This implies that, if x′
iβ changes due to a small change in the k-th independent variable, the

probability of success will always change in the same direction.
If we want to obtain a quantitative measure of how large is the effect of a change in the

k-th independent variable on the probability of success, we have to calculate the marginal effect
for this variable. Applying the chain rule to a generic index function leads to the following
expression for this effect:

∂ Prob(yi=1|xi)

∂xik
= f (x′

iβ) · βk (6.26)

where f (·) is the derivative function of F (·). When F (·) is a cumulative density function,
f (·) is the associated probability density function. Thus, this expression becomes:

∂ Prob(yi=1|xi)

∂xik
=
[

(2π)
−1/2

exp
{

− 1
2 (x

′
iβ)

2
}]

· βk (6.27)

for the Probit model and:

∂ Prob(yi=1|xi)

∂xik
=

[

ex
′

iβ

(

1 + ex
′

iβ
)2

]

· βk (6.28)

5F (·) is the standard-Normal or standard-Logistic cumulative density function for the Probit and Logit
models, respectively.



6.4. INTERPRETATION OF PARAMETERS AND MARGINAL EFFECTS 101

for the Logit model. Due to the first factor in each expression being non-linear in x′
iβ, the

marginal effects depend on the point, xi, at which they are evaluated. Although this can be
any point of particular interest, typical choices are the mean or median of the independent
variables, as they are observed in the dataset used for estimation. An alternative approach
is to calculate the marginal effect for each data point and then report the sample average of
these observation-specific effects.

Contrary to the model’s parameters, marginal effects can be given an interpretation in
terms of the units of measurement of the independent variables. For example, if the marginal
effect of the k-th independent variable, evaluated at a particular point, is equal to z, then
a unit increase in this independent variable leads to a change in the probability of success
by z. Interpretation of the marginal effect of a dummy independent variable requires some
attention. Because dummy variables can only assume two values, 0 or 1, it does not make
sense to ask questions that involve a “small change” in their value. Typically, if the k-th
independent variable is a dummy variable, its “marginal effect” is calculated as the difference
in the probability of success when the value of the dummy variable changes from 0 to 1:

Prob(yi=1|xi1)− Prob(yi=1|xi0) = F (x′
i1β)− F (x′

i0β) (6.29)

where xi0 is a vector that consists of the values of the independent variables at the point at
which the marginal effect is evaluated, but with a zero in the k-th place. xi1 is a similar vector,
but with a one in the k-th place.

An important thing to recognize about the marginal effects is that they are also random
variables. Even if the point at which a marginal effect is evaluated is treated as fixed (for
example, chosen by the researcher), the value of the marginal effect depends on the values of
the βs. Nevertheless, uncertainty with respect to the values of the parameters can be taken into
account by evaluating the marginal effect at each draw obtained from the full conditional of β,
generated by the Gibbs sampler. This approach amounts to simulation-based approximation
of the moments of marginal effects and the researcher can choose which of these moments to
report.

� Example 6.1 Union Membership (Continued)
We will keep using here the data from Vella & Verbeek (1998) that were used in the two previous parts
of this example to model the probability of an individual’s wage being set in a collective bargaining
agreement, using a Probit and Logit model, respectively. If the models estimated using the BayES’
probit() and a logit() functions are stored in memory (they are given a left-hand-side value), then
the mfx() function can be used to calculate the marginal effects for the models’ independent variables.
The marginal effects for the Probit model, evaluated at the sample means of the independent variables
are given in the following table. This table is followed by a table that contains the corresponding
marginal effects obtained from the Logit model.

dProb(y=1)/dx Mean Median Sd.dev. 5% 95%

hours -0.0519124 -0.0518528 0.0120186 -0.071646 -0.032153
*married 0.0613966 0.0613737 0.0137269 0.0388949 0.0840416
*black 0.169879 0.169763 0.0234874 0.131463 0.2089
*hisp 0.0617634 0.0617471 0.0193936 0.0300097 0.093782
*health -0.114603 -0.118348 0.040164 -0.173875 -0.0429363

*Marginal effect is calculated for discrete change from 0 to 1.

Mean Median Sd.dev. 5% 95%

hours -0.050128 -0.0500867 0.0116633 -0.0691871 -0.0305501
*married 0.0621888 0.0622301 0.0134484 0.0404735 0.0850314
*black 0.172435 0.172149 0.023942 0.133665 0.213077
*hisp 0.062288 0.0618445 0.019634 0.0314598 0.0955617
*health -0.114687 -0.118931 0.0394839 -0.171541 -0.0453364

*Marginal effect is calculated for discrete change from 0 to 1.

In the last part of this example we recognized that the parameter estimates from the Probit and
Logit models differ substantially in magnitude. This is to be expected as the parameters themselves
play a different role in each model. The marginal effects, however, measure the same underlying
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quantity (change in probability caused by a “small change” in the independent variable) and their
magnitude is very similar in the two models. For example, the marginal effect of the hours variable
from the Probit model suggests that increasing the number of hours worked during the year by 1,000
reduces the probability of success, in expectation, by 0.052. The corresponding reduction from the
Logit model is 0.050 units. Similarly, a married person has higher probability of having his wage set
by a collective agreement relative to a single person by 0.061/0.062 units, according to each model.

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset and generate a constant term

Data = webimport("www.bayeconsoft.com/datasets/UnionMembership.csv");

Data.constant = 1;

// run the Probit and Logit models

Probit = probit( union ∼ constant hours married black hisp health );

Logit = logit( union ∼ constant hours married black hisp health );

// calculate marginal effects from the two models at the means of the data

mfx( "model"=Probit, "point"="mean" );

mfx( "model"=Logit, "point"="mean" );
✝ ✆

6.5 Binary-Response Models for Panel Data

Extending binary-response models so that they can accommodate panel data is straightforward
when data augmentation is used. In close analogy to a linear regression model with individual
effects, a random-effects binary-response model assumes that the probability of success is
determined by a monotonic transformation of the group effects and the sum of interactions
between independent variables and parameters to be estimated:

Prob(yit = 1|xit, αi) = F (αi + x′
itβ) (6.30)

F (·) in this expression is a generic index function that maps its argument onto the unit interval.
As with the simple binary-response models, estimation of random-effects models is easier to
handle using the latent-variable representation. In this formulation the Probit model becomes:

y∗it = αi + x′
itβ + εit, εit ∼ N(0, 1) , αi ∼ N

(

0, 1
ω

)

yit =

{

1 if y∗it > 0
0 if y∗it ≤ 0

where the assumption that each group effect follows a Normal distribution is added. The only
difference in a random-effects Logit model is that εit follows a standard-Logistic distribution.

No new results are required for estimating the binary-Probit model with random effects
and only minor changes are necessary for the random-effects binary-Logit model. The full
conditionals of β and y∗it in these two models are similar to those that appear in Theorems 6.1
and 6.2 and need only to be amended such that the means of the corresponding densities are
αi+x′

itβ instead of x′
iβ. For the Probit model, the values of the y∗its generated by the Gibbs

sampler replace yit in the full conditional of the αis, as they are presented in Theorem 5.1,
while no changes are required for the full conditional of ω from the linear model. For the Logit
model, however, the full conditionals of the αis no longer belong to a parametric family from
which random numbers can be drawn directly:

π (αi|•) ∝
T
∏

t=1

[

ey
∗

it−αi−x′

itβ

(

1 + ey
∗

it−αi−x′

itβ
)2

]

× exp
{

−ωα2
i

2

}

(6.31)

As always, Metropolis-Hastings updates can be used to sample from the full conditional of
each αi.

Although no real conceptual differences appear when moving from simple binary-response
models to models with random effects, calculation and interpretation of marginal effects present
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some new challenges. The marginal effect of the k-th independent variable with a generic index
function, F (·), is:

∂ Prob(yit=1|xit, αi)

∂xit,k
= f (αi + x′

itβ) · βk (6.32)

where f (·) is the derivative function of F (·). However, the group effects are not observed and,
therefore, the point at which f (·) has to be evaluated is unknown. There are two approaches
for dealing with this issue:

1. restrict each αi to zero, as this is both its most likely and its expected value according
to the assumption αi ∼ N

(

0, 1
ω

)

. This leads to conditional marginal effects .

2. integrate uncertainty with respect to the values of αi from the marginal effects. This
leads to averaged marginal effects .

The method of calculating averaged marginal effects is easier to describe using the latent-
variable representation of binary-response models and much easier to perform in the Probit
model. The latent-variable representation of the Probit model implies:

yit =

{

1 if αi + εit > −x′
itβ

0 if αi + εit ≤ −x′
itβ

(6.33)

Notice that because αi is unobserved, it is treated here as part of the error term. Let wit ≡
αi + εit. Since wit is the convolution of two Normally-distributed random variables, it also
follows a Normal distribution with mean zero and precision ξ = ω

1+ω . Therefore:

Prob
(

yit = 1
∣

∣xit

)

= Prob
(

wit > −x′
itβ
∣

∣xit

)

= Prob
(

zit > −
√

ξ · x′
itβ
∣

∣xit

)

= Φ
(

√

ξ · x′
itβ
)

(6.34)

where zit ∼ N(0, 1). Given this result, the averaged marginal effect for the k-th independent
variable, evaluated at point xit is:

∂ Prob(yit = 1)

∂xit,k
= (2π)

−1/2
exp

{

− (
√
ξ·x′

itβ)
2

2

}

·
√

ξ · βk (6.35)

This procedure takes care of uncertainty with respect to the value of αi. As before, un-
certainty with respect to the values of the parameters can be integrated out by evaluating the

averaged marginal effects at each pair of draws,
(

β(g), ω(g)
)

, produced by the Gibbs sampler.

It may appear at first that the same procedure, with minor modifications, can be followed
when calculating the averaged marginal effects for a Logit model. This procedure, however, hits
onto a wall when having to define the cumulative density function of wit ≡ αi + εit. Because
in the Logit model εit follows a standard-Logistic distribution, wit is the convolution of a
Normally and a Logistically distributed random variable and its cumulative density function
has a very complex form (Gupta & Nadarajah, 2008). Instead of approximating this complex
function, αi can be treated as an unknown and integrated from the marginal effect using a
Guass-Hermite quadrature. Formally, the averaged marginal effect for the k-th variable is:

∂ Prob(yit = 1|xit)

∂xit,k
= βk

∞
∫

−∞

∂ Prob(yit = 1|xit, α)

∂xit,k
p(α) dα (6.36)

were the fact that αi is independent of the x variables is used to simplify the expression.
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� Example 6.2 Union Membership with Random Effects
In this example we will use again the data from Vella & Verbeek (1998). We will employ both Probit
and Logit models with random effects of the following form:

Prob(unionit = 1) = F (αi + β1 + β2hoursit + β3marriedit + β4blackit + β5hispit + β6healthit)

to model the probability of an individual’s wage being set in a collective bargaining agreement. Using
BayES’ probit_re() and logit_re() functions, we obtain the results in the following two tables.

We notice again that the posterior means of the parameters differ substantially between the two
models. Furthermore, these estimates differ from the ones obtained using the Probit and Logit models
without random effects, which, along with the posterior mean of ω being relatively small, indicates
that individual-specific unobserved heterogeneity has a large impact on the results. As in the simple
binary-response models, we can only interpret the signs of the parameter estimates, but not their
magnitudes.

Mean Median Sd.dev. 5% 95%

constant -1.26135 -1.25964 0.18163 -1.56251 -0.965651
hours -0.173859 -0.173641 0.0658939 -0.281828 -0.0659159
married 0.148267 0.148004 0.0827272 0.0126782 0.284378
black 0.980143 0.97843 0.26235 0.551895 1.41573
hisp 0.497062 0.496222 0.233149 0.115129 0.882007
health -0.426416 -0.423766 0.273909 -0.88632 0.0184441

omega 0.344765 0.342964 0.0394689 0.283148 0.41243
sigma alpha 1.71148 1.70756 0.0982653 1.55714 1.87934

Mean Median Sd.dev. 5% 95%

constant -2.23299 -2.2333 0.314293 -2.75218 -1.71597
hours -0.32676 -0.326845 0.117889 -0.520654 -0.133128
married 0.285391 0.285187 0.146128 0.0426119 0.52498
black 1.78431 1.79204 0.437257 1.05695 2.49308
hisp 0.872266 0.875463 0.420684 0.173618 1.56974
health -0.78715 -0.763513 0.495039 -1.6381 -0.0183024

omega 0.108519 0.10798 0.0130879 0.0879224 0.130807
sigma alpha 3.05228 3.04319 0.185364 2.76494 3.37253

The magnitude of the corresponding marginal effects, on the other hand, can be interpreted in
terms of the units of measurement of the independent variables. The following two tables present the
averaged marginal effects for the Probit and Logit models, respectively, both evaluated at the sample
means of the independent variables. As in the case of binary-response models without random effects,
the posterior moments of the marginal effects from the random-effects Probit and Logit models are
very similar.

dProb(y=1)/dx Mean Median Sd.dev. 5% 95%

hours -0.0273372 -0.0273097 0.0104264 -0.044536 -0.0103453
*married 0.0234191 0.0233288 0.0131467 0.0019967 0.0451452
*black 0.172155 0.171653 0.0488668 0.0931708 0.253171
*hisp 0.0832189 0.0824989 0.0401423 0.0183486 0.150572
*health -0.0597496 -0.0613837 0.0363692 -0.117014 0.00294351

*Marginal effect is calculated for discrete change from 0 to 1.

dProb(y=1)/dx Mean Median Sd.dev. 5% 95%

hours -0.0290922 -0.0290373 0.0105196 -0.0463726 -0.0119123
*married 0.0254943 0.0254845 0.0131122 0.00380234 0.0471321
*black 0.174426 0.174704 0.0457013 0.0992204 0.249219
*hisp 0.0814554 0.0812937 0.0400345 0.0156925 0.147785
*health -0.0623797 -0.0631842 0.0363061 -0.121534 -0.00161118

*Marginal effect is calculated for discrete change from 0 to 1.

Finally the conditional marginal effects for the Probit and Logit models, again evaluated at the
sample means of the independent variables, are given in following two tables. From these results we
notice that the averaged and conditional marginal effects differ only slightly.
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dProb(y=1|a=0)

dx Mean Median Sd.dev. 5% 95%

hours -0.0263526 -0.025962 0.0105964 -0.0443266 -0.00965044
*married 0.0229053 0.0223969 0.0133352 0.00187171 0.0456316
*black 0.237393 0.232529 0.0836294 0.10916 0.383237
*hisp 0.0985098 0.0937853 0.0540631 0.0183407 0.195316
*health -0.0431709 -0.0462635 0.0249444 -0.0782462 0.00281976

*Marginal effect is calculated for discrete change from 0 to 1.

dProb(y=1|a=0)

dx Mean Median Sd.dev. 5% 95%

hours -0.023151 -0.0227135 0.00899897 -0.0386072 -0.00919084
*married 0.0206655 0.0202458 0.0111638 0.00298201 0.0398194
*black 0.22872 0.223768 0.0815691 0.103695 0.371767
*hisp 0.0851502 0.0800911 0.0500504 0.0129658 0.176661
*health -0.0369545 -0.0388756 0.0201243 -0.0666451 -0.00121787

*Marginal effect is calculated for discrete change from 0 to 1.

Given that the probability of occurrence of the same event is modeled by both Probit and Logit
models, we can perform formal model comparison. The results in the following table indicate that the
data clearly favor the Logit model.

Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

REProbit -1698.31 Lewis & Raftery 0.5 0.00300232
RELogit -1692.5 Lewis & Raftery 0.5 0.996998

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset and generate a constant term

Data = webimport("www.bayeconsoft.com/datasets/UnionMembership.csv");

Data.constant = 1;

// declare the dataset as a panel

set_pd(year,id);

// run a random-effects Probit model

REProbit = probit_re( union ∼ constant hours married black hisp health,

"chains"=2, "thin"=10 );

// run a random-effects Logit model

RELogit = logit_re( union ∼ constant hours married black hisp health,

"chains"=2, "thin"=10 );

// calculate averaged marginal effects for the two models

mfx( "model"=REProbit, "point"="mean", "type"=1 );

mfx( "model"=RELogit, "point"="mean", "type"=1 );

// calculate conditional marginal effects for the two models

mfx( "model"=REProbit, "point"="mean", "type"=2 );

mfx( "model"=RELogit, "point"="mean", "type"=2 );

// compare the two models

pmp( { REProbit, RELogit } );
✝ ✆

6.6 Multivariate Binary-Response Models

Until now we worked with models that have a single response variable, yi, which can be in
one out of two possible states. In specific settings, however, the phenomenon under investiga-
tion may involve binary-response variables, the states of which may not be independent. For
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example, we may be interested on the magnitudes of the effects of various socioeconomic and
demographic characteristics of an individual (income, occupation type, age, marital status,
etc.) on the probability of the individual purchasing a life-insurance policy and making volun-
tary contributions to a pension scheme. In principle, we could model the two binary decisions
using two separate binary-response models. If yi1 and yi2 are two binary random variables
indicating the individual’s choices regarding the first and second decisions, respectively, the
two models in the latent-variable representation would be:

y∗1i = x′
1iβ1 + ε1i

y∗2i = x′
2iβ2 + ε2i

(6.37)

where, for generality, we also allow for the possibility of the vectors of independent variables
to differ between equations. In practice, however, we would expect the two decisions to be
interrelated. For example, the degree of risk aversion of the decision maker, which is rarely
observed and, thus, not included in either x1i or x2i, would affect both y∗1i and y∗2i in the same
direction. This effect would be captured by the error terms, making them positively correlated
and inducing a positive correlation between the observed y1i and y2i. By modelling the two
decisions separately, we ignore this correlation, as we work with the marginal distribution of
each error term relative to the other. The main implication of this is that we are not exploit-
ing all the information available in the data, something that usually results in wider credible
intervals for the parameters in β1 and β2 compared to the case where this information is fully
exploited. Multivariate binary-response models take into account the possible interrelationship
between the random variables using a setup similar to the Seemingly Unrelated Regressions
(SUR) models (see Chapter 3). Another reason for using a multivariate binary-response model
versus multiple univariate ones is that the multivariate model can make predictions for the
probabilities of combinations of values for the response variables. In the example above, a
bivariate binary-response model could predict the probability of and individual both purchas-
ing a life insurance and making voluntary contributions, Prob(y1i=1, y2i=1|x1i,x2i), doing
only one of the two, Prob(y1i=1, y2i=0|x1i,x2i) or Prob(y1i=0, y2i=1|x1i,x2i), or neither,
Prob(y1i=0, y2i=0|x1i,x2i).

In the most general setting, we consider an M -dimensional random vector yi, each element
of which is a random variable that can assume two possible values: 0 and 1. Similarly to
univariate binary-response models, we will model the probability of yi being equal to an M -
dimensional vector, z, of 0s and 1s.6 Contrary to univariate models, however, it is much harder
to work with this probability directly, as this now involves a multidimensional integral. Instead,
we will start from the latent-variable representation of the model. Toward this end, for each
element ymi of yi we define a latent variable, y∗mi, that satisfies:

ymi =

{

1 if y∗mi > 0
0 if y∗mi ≤ 0

∀m = 1, 2. . . . ,M (6.38)

We then assume that each y∗mi can be expressed as a linear function of independent variables
and parameters to be estimated plus statistical noise:

y∗1i = x′
1iβ1 + ε1i

y∗2i = x′
2iβ2 + ε2i

...
...

...
y∗Mi = x′

MiβM + εMi

(6.39)

This system of equations is almost identical to the one in (3.1) that we encountered in the
SUR model and the only difference is that the dependent variables are now unobserved. A
distributional assumption on the error terms is enough to complete the specification of the
model and, throughout this section, we will assume that the εmis jointly follow a multivariate-
Normal distribution with mean 0 and covariance matrix Σ. This gives rise to the multivariate

6Vector z is just an element of the sample space of yi. Notice that in univariate binary-response models z

was typically set equal to 1, while we could easily get Prob(yi=0|xi) = 1−Prob(yi=1|xi).
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Probit model, which in compact form can be written as:

y∗
i = Xiβ + εi, εi ∼ N(0,Σ)

ymi =

{

1 if y∗mi > 0
0 if y∗mi ≤ 0

∀m = 1, 2. . . . ,M
(6.40)

where:

y∗
i

M×1

=











y∗1i
y∗2i
...

y∗Mi











, Xi
M×K

=











x′
1i 0 . . . 0
0 x′

2i . . . 0
...

...
. . .

...
0 0 . . . x′

Mi











, β
K×1

=











β1

β2
...

βM











and εi
M×1

=











ε1i
ε2i
...

εMi











There are two important notes to make about the specification of the model:

1. We specify the model in terms of the covariance matrix, Σ, of εi, not in terms of the
precision matrix, Ω ≡ Σ−1. This is done because it simplifies the estimation process and
the interpretation of the results.

2. There is no direct counterpart to a multivariate Logit model. Although the logistic
distribution can be generalized in multiple dimensions (Malik & Abraham, 1973), this
generalization restricts the covariance matrix of εi to a constant, instead of allowing
estimation of its elements. Nevertheless, some workarounds have been proposed in the
literature (Carey et al., 1993; Glonek & McCullagh, 1995)

The multivariate Probit model was introduced by Ashford & Sowden (1970), who proposed
estimation by maximum likelihood and Amemiya (1974) considered alternative methods of
estimation. Both papers considered only frequentist methods and, due to the computational
complexity of the model, restricted attention to bivariate Probit models (M = 2). Chib &
Greenberg (1998) proposed Bayesian estimation of the model, which, through data augmenta-
tion, can accommodate any number of response variables.

An equivalent representation of the multivariate Probit model is:

Prob(yi=z|Xi) =

∫

AMi

· · ·
∫

A1i

|Σ|−1/2

(2π)
M/2

exp

{

−1

2
(y∗

i −Xiβ)
′
Σ−1(y∗

i −Xiβ)

}

dy∗
i

Ami =

{

(0,+∞) if zm = 1
(−∞, 0] if zm = 0

∀m = 1, 2. . . . ,M

(6.41)

As complex as this expression may appear, it is nothing more than the multivariate gener-
alization of (6.5). Due to (6.40), εi = y∗

i −Xiβ follows a multivariate-Normal distribution,
the density of which appears inside the M -dimensional integral. Because each εmi is positive
whenever zm =1 and negative otherwise, the range of integration in each dimension m is re-
stricted accordingly. Despite the intuition behind (6.41), the multidimensional integral does
not have a closed form and calculating its value is challenging, but can be accomplished by
the Geweke-Hajivassiliou-Keane (GHK ) algorithm (Geweke, 1991; Hajivassiliou et al., 1996;
Keane, 1994).7 Nevertheless, when data augmentation is used, estimation can be based on
the latent-variable representation of the model and there is no need to evaluate this integral.
Evaluation, however, is necessary for making predictions for the probabilities of joint events.

It may appear that we now have all necessary ingredients for constructing a Gibbs sampler.
The first step in an iteration of the sampler would be to draw y∗

i from a multivariate-Normal
distribution, truncated appropriately given the values of z, as we did in the univariate case.
In the second step we would sample for β and Ω ≡ Σ−1 using the complete conditionals

7The GHK algorithm uses simulation to approximate the probability of a multivariate-Normally distributed
random vector assuming a value in a linearly restricted space. It does this by expressing the joint proba-
bility Prob(yi = z|Xi) as a series of conditional probabilities, thus requiring drawing from truncated-Normal
distributions in one dimension at a time. The algorithm itself is rather complex and we will not cover it here.
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that we developed for the SUR model. However, as the model was presented until now, we
cannot uniquely identify the magnitudes of the parameters. In particular, if instead of (β,Σ)

we use the parameterization
(

β̆, Σ̆
)

, then Prob(yi|Xi,β,Σ) = Prob
(

yi

∣

∣Xi, β̆, Σ̆
)

whenever

βm = σ̆
−1/2
mm β̆m and Σ = DΣ̆D, where D is a diagonal matrix with σ̆

−1/2
mm on the mth position

on the diagonal. We encountered the same issue in the univariate Probit model and we resolved
it by restricting the variance of εi to unity. In the multivariate case we need to impose a similar
normalization for each of the response variables. To start with, note that due to y∗

i following
a multivariate-Normal distribution, each y∗mi follows, marginally with respect to the remaining
y∗ℓis, a univariate-Normal distribution. If we want the multivariate Probit model to be a true
generalization of the univariate Probit, then we need to set all the diagonal elements of Σ
to one. Thus, the obvious way to resolve the non-identification issue is to scale Σ in such a
way that it becomes a proper correlation matrix. The problem with this normalization is that
there is no conjugate prior for a correlation matrix and implementing a Metropolis-Hastings
step for Σ inside the Gibbs sampler is complicated by the fact that Σ must remain positive
semi-definite in every iteration of the sampler.

Three main types of approaches can be used to construct a Gibbs sampler for the multi-
variate Probit model. The first one is to ignore the non-identification issue and treat Σ as a
general covariance matrix when sampling from the complete conditionals of β and Σ, but nor-
malize the draws before reporting the moments of the posterior distribution. Chib & Greenberg
(1998) argue against this approach, as it can quickly lead to numerical instability and conver-
gence problems, unless the prior on Σ is rather informative. They instead advocate using a
Metropolis-Hastings step for updating Σ, with the draw rejected whenever the proposed move
results in a non-positive-definite matrix. X. Liu & Daniels (2006) review the relevant literature
and develop an algorithm for sampling from the full conditional of a correlation matrix using
parameter expansion (see Section 4.4). We will present here a similar approach, although using
a setup and terminology that is closer to marginal data augmentation, rather than parameter
expansion.

We start by defining Σ̆ as an M ×M positive-definite, but otherwise unrestricted matrix.
We then place an inverse-Wishart prior on it, with degrees-of-freedom parameter n and scale
matrix S:

p
(

Σ̆
)

=
|Σ̆|−n+M+1

2 |S|n/2
2nM/2ΓM

(

n
2

) exp







−
tr
(

SΣ̆
−1
)

2







(6.42)

This prior is equivalent to imposing a Wishart prior on Ω≡Σ−1 with the same degrees-of-
freedom parameter and scale matrix S−1. We then transform from Σ̆ to (α,Σ) by defining Σ =

DαΣ̆Dα, where α =
[

σ̆
−1/2
11 σ̆

−1/2
22 · · · σ̆

−1/2
MM

]′
and Dα is a diagonal matrix constructed

by putting the elements of α on the diagonal. In a marginal data-augmentation setup α

plays the role of the working parameter and the Σ matrix constructed in this way is always a
correlation matrix. It can be shown that the determinant of the Jacobian of the transformation
from Σ̆ to (α,Σ) is equal to 1

2M

∏M
m=1 α

M+2
m and an application of the multivariate change-

of-variables theorem leads to the following probability density function for (α,Σ):

p(α,Σ) =

|Σ|−
n+M+1

2 |S|n/2
M
∏

m=1
αn−1
m

2
(n−2)M

2 ΓM

(

n
2

)

exp

{

− tr
(

SDαΣ
−1Dα

)

2

}

(6.43)

In the specific case where S is diagonal, α can be integrated-out from this density analytically,
leading to a prior density for Σ of the form:

p(Σ) = |Σ|−
n+M+1

2 ×
∏

m

(

Σ−1
[mm]

)−n
2 × ΓM

(

n
2

)

ΓM

(

n
2

) × 1

(

diag(Σ) = 1
)

(6.44)

where Σ−1
[mm] is the mth diagonal element of Σ−1. In short, the prior imposed on Σ̆ in (6.42)

implies the density in (6.44) when S is diagonal. Notice that in this case, the magnitudes of
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the elements of S have no impact on the prior for Σ. On the contrary, very few simplifications
can be made to (6.43) when S is not diagonal.

The marginal data augmentation setup of the model starts from the original modeling
assumption: y∗

i =Xiβ + εi, with εi ∼ N(0,Σ). Pre-multiplying both sides of the system of
equations by D−1

α leads to y̆∗
i ≡D−1

α y∗
i = D−1

α Xiβ+D−1
α εi with εi ∼ N

(

0,D−1
α ΣD−1

α

)

, where

D−1
α ΣD−1

α = Σ̆ is a positive-definite matrix on which we impose the inverse-Wishart prior in
(6.42). Finally, we define DK as a K×K diagonal matrix, constructed by replicating each αm

as many times as the number of independnet variables in equation m:8

DK =











α1IK1 0K1×K2 · · · 0K1×KM

0K1×K1 α2IK2 · · · 0K2×KM

...
...

. . .
...

0KM×K1 0KM×K2 · · · αMIKM











(6.45)

Then D−1
α Xiβ = XiD

−1
K β and the system of equations can be written as:

y̆∗
i = Xiβ̆ + ε̆i, ε̆i ∼ N

(

0, Σ̆
)

(6.46)

where β̆ ≡ D−1
K β.

The main steps of the Gibbs sampler with marginal data augmentation, at a very abstract
level, are:

(a) draw ({y∗
i } ,α) from the transition kernel, K, of a Markov chain with stationary distri-

bution p
(

{y∗
i } ,α

∣

∣ {yi} ,β,Σ
)

and transform to y̆∗
i ; this is further broken into the steps:

(a1) draw {y∗
i } from p

(

{y∗
i }
∣

∣ {yi} ,β,Σ
)

(a2) draw α from p
(

α
∣

∣Σ
)

(a3) transform each y∗
i to y̆∗

i = D−1
α y∗

i

(b) draw β̆ from p
(

β̆
∣

∣ {y̆∗
i } ,Σ,α

)

and transform to β; this is further broken into the following
steps:

(b1) draw β̆ from p
(

β̆
∣

∣ {y̆∗
i } ,Σ,α

)

(b2) construct DK , transform β̆ to β = DK β̆ and store this β

(c) draw Σ̆ from p
(

Σ̆
∣

∣ {y̆∗
i } , β̆

)

and transform; this is further broken into the following steps:

(c1) draw Σ̆ from p
(

Σ̆
∣

∣ {y̆∗
i } , β̆

)

and construct Dα from the elements of Σ̆

(c2) set Σ = DαΣ̆Dα and store this Σ

(c3) construct DK and transform each y̆∗
i to y∗

i = Dαy̆
∗
i and β̆ to β = DK β̆

If we use a multivariate-Normal prior for β with mean m and precision P, almost all
densities from which we need to sample are standard:

1. The complete conditional of each y∗
i in step (a1) is a multivariate-Normal distribution

with mean Xiβ and variance Σ, truncated from below at zero in the dimensions for
which ymi = 1 and from above at zero in the dimensions for which ymi = 0. Although
challenging, sampling from the complete conditional of each y∗

i can be done using either
rejection or Gibbs sampling.9

8If all M equations have the same number of independent variables, Km, then DK can be expressed as
Dα ⊗ IKm .

9Rejection sampling consists of nothing more than repeatedly sampling from the respective unrestricted
multivariate-Normal distribution until the resulting draw for y∗

i is in the required range. The probability of
generating a draw in the required range depends on M , the current value of Xiβ in the Gibbs sampler and
yi, and could be very low. Thus, a pure rejection sampling procedure could become very inefficient, with a
vast number of draws generated before one is accepted. Gibbs sampling generates a draw from the complete
conditional of y∗

i by sampling from a univariate truncated-Normal distribution, given the values of y∗
i in all

remaining dimensions.
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2. The complete conditional of β̆ in step (b1) is a multivariate Normal with precision P̃ =
N
∑

i=1

X′
iDαΣ

−1DαXi +DKPDK and mean β̃ = P̃−1

(

N
∑

i=1

X′
iDαΣ

−1Dαy̆
∗
i +DKPm

)

.

3. The complete conditional of Σ̆ in step (c1) is an inverse-Wishart with degrees-of-freedom

parameter ñ = N + n and scale matrix S̃ =
N
∑

i=1

(

y̆∗
i −Xiβ̆

)(

y̆∗
i −Xiβ̆

)′
+ S.

The only challenging part is sampling from p
(

α
∣

∣Σ
)

in step (a2). However, if the scale matrix

in the prior for Σ̆ is diagonal, then each element of α follows a Nakagami-m distribution,
which is easy to sample from. If this scale matrix is not diagonal, we need to resort to a
Metropolis-Hastings step.

The following example uses the multivariate Probit model to examine the effect of individual-
level socioeconomic and demographic characteristics on the probability of three outcomes: in-
vesting in the stock market, having other types of savings to use in retirement, and being a
homeowner.

� Example 6.3 Saving and Investing
In this example we will use part of the dataset constructed through the 2017 Cooperative Congressional
Election Study (Schaffner & Ansolabhere, 2019). The original dataset contains 18,200 observations
(US-based individuals above the voting age) and information on 267 variables. We will use here only
5,000 randomly drawn observations from this dataset and the following variables:

investor : dummy variable, 1 if the respondent has money invested in the stock market
savings : dummy variable, 1 if the respondent has savings accounts, pensions, or other in-

vestments that they could use in retirement
homeowner : dummy variable: 1 if the respondent owns their own home

age : age of the respondent in years
educ : educational level of the respondent, coded from 1 to 6 with larger values corre-

sponding to higher educational level
male : dummy variable: 1 if the respondent is male

faminc : annual family income bracket, coded from 1 (less that $10,000) to 16 (more than
$500,000) and increasing by $10,000 when income is bellow $100,000 and by larger
amounts after that

We will model the state of the first three variables above (0 or 1) by using the model:

investor∗i = β11 + β12agei + β13educi + β14malei + β15faminci + ε1i
savings∗i = β21 + β22agei + β23educi + β24malei + β25faminci + ε2i

homeowner∗i = β31 + β32agei + β33educi + β34malei + β35faminci + ε3i

where the three variables in the left-hand side of the equations can be thought of as the differences in
utilities that individual i derives from using the respective method of saving or not. We will also assume
that the εmis follow a multivariate-Normal distribution and allow them to be correlated: εi ∼ N (0,Σ),
where εi ≡

[

ε1i ε2i ε3i
]′

and Σ is scaled such that its diagonal elements are equal to one. Taken
together, these assumptions lead to a multivariate Probit model with M =3. Note that we use here
the same independent variables in all three equations, This is not necessary, however, and we could
use different sets of variables per equation, disjoint or not. Also, because εi follows a multivariate-
Normal distribution, each of the error terms follows, marginally with respect to the remaining εℓis, a
univariate-Normal distribution with mean zero an variance one. Thus, we could instead estimate the
βs in the model above using three separate univariate Probit models. This approach, however, cannot
provide estimates of the off-diagonal elements of Σ.

The results obtained using BayES’ mvprobit() function to estimate the multivariate-Probit model
are presented in the following table. Except for the parameters associated with the individual’s educa-
tional level and gender in the equation where the response variable captures whether the respondent
is a homeowner or not, all other slope parameters are positive and their 90% credible intervals do not
contain zero. Because each latent dependent variable follows, marginally with respect to the other,
a univariate-Normal distribution we can interpret the signs of these parameters. For example, older
individuals are more likely to invest in the stock market, as well as to have other forms of savings



6.6. MULTIVARIATE BINARY-RESPONSE MODELS 111

and to own a house. However, as the probability of success in each of the three response variables is
a non-linear function of the parameters, we should refrain from interpreting the magnitudes of these
parameters.

Mean Median Sd.dev. 5% 95%

investor
constant -2.49983 -2.49978 0.0875499 -2.64399 -2.35776
age 0.0109609 0.0109589 0.00115749 0.00906729 0.012877
educ 0.149862 0.149812 0.0142048 0.126563 0.17347
male 0.273818 0.273965 0.0392544 0.209114 0.338338
faminc 0.158985 0.158981 0.00668294 0.148021 0.170084

savings
constant -2.21019 -2.21015 0.0877345 -2.35536 -2.06527
age 0.0162371 0.0162379 0.00118512 0.0142868 0.0181883
educ 0.148181 0.148172 0.0149679 0.123253 0.172899
male 0.297574 0.297704 0.0402341 0.231492 0.363458
faminc 0.184913 0.184829 0.00715524 0.173186 0.196749

homeowner
constant -1.77696 -1.7766 0.0819438 -1.91279 -1.64407
age 0.0262803 0.0262838 0.00118565 0.0243446 0.0282255
educ 0.0127839 0.0126896 0.0143497 -0.0105772 0.0368126
male -0.00951553 -0.00984216 0.0398539 -0.0747032 0.0557755
faminc 0.140924 0.140939 0.00679899 0.129771 0.152214

We note in passing that the posterior expectation of Σ is:

E
(

Σ
∣

∣ {yi}
)

=





1 0.68381436 0.25318785
0.68381436 1 0.24996288
0.25318785 0.24996288 1





which clearly shows that the error terms in the three equations are positively correlated. This implies
that unobserved factors at the individual level tend to affect the probability of success in the three
response variables in the same direction.

Obtaining the results presented above using BayES can be achieved using the code in the following
box.

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/CCES2017.csv");

// generate a constant term

Data.constant = 1;

// run the model

myMVProbit = mvprobit( {

investor ∼ constant age educ male faminc,

savings ∼ constant age educ male faminc,

homeowner ∼ constant age educ male faminc

} );

// print the posterior mean of Sigma

print(myMVProbit.Sigma);
✝ ✆

As in the univariate Probit and Logit models, due to the probability of success being a
non-linear function of the independent variables and the parameters, in multivariate Probit
models we can interpret the signs of these parameters, but not their magnitudes. We can
interpret, however, the magnitudes of marginal effects of the form:

∂ Prob(ymi=1|Xi)

∂xℓik
(6.47)

where xℓik is the kth independent variable in equation ℓ. ℓ could be the same asm, in which case
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we evaluate the marginal effect of a variable that appears in themth equation on the probability
of success for the mth response variable, or it could be different from m. There are two types
of effects that we could calculate with respect to an independent variable, xℓik, both of which
could be of interest in the context of the application: the effect on the probability of ymi=1
marginally with respect to the remaining response variables or conditional on them being equal
to 0 or 1. Because the distribution of each y∗mi marginally with respect the remaining y∗ℓis is
univariate Normal, the first type of marginal effects is straightforward to calculate:

∂ Prob(ymi=1|Xi)

∂xℓik
=







[

(2π)−1/2 exp

{

− (x′

miβm)
2

2

}]

· βmk if ℓ = m

0 if ℓ 6= m
(6.48)

Notice that the upper branch of this expression is the same as the marginal effect of a variable
in the univariate Probit model, as presented in equation (6.27). In this type of marginal effects
only the independent variables in equation m affect the probability of ymi being equal to one.

Calculating marginal effects on Prob(ymi=1|Xi) conditional on the values of the remaining
response variables requires some additional transformations. To start with, let z/m be an
(M−1)×1 vector with entries equal to zero for the yℓs that are to be restricted to zero when
conditioning and entries equal to one for the yℓs that are to be restricted to one. Notice that
z/m does not contain a value for ymi itself because this is allowed, at least conceptually, to
change from zero to one when calculating the marginal effect. For example, when M =4 and
m=2, z/2 =

[

1 0 0
]′

is taken to mean that we are conditioning on y1i=1 and y3i=y4i=0
while calculating the marginal effect on Prob(y2i=1|Xi). With this notation, the probability
on which we want to calculate marginal effects can be expressed as:

Prob
(

ymi=1|yi/m=z/m
)

=
Prob

(

ymi=1,yi/m=z/m
)

Prob
(

yi/m=z/m
) (6.49)

where yi/m is an (M−1)×1 random vector that contains the random variables in yi except
ymi. This expression for the example given above becomes:

Prob
(

y2i=1
∣

∣y1i=1, y3i=0, y4i=0
)

=
Prob(y2i=1, y1i=1, y3i=0, y4i=0)

Prob(y1i=1, y3i=0, y4i=0)

=
Prob(y∗2i>0, y∗1i>0, y∗3i≤0, y∗4i≤0)

Prob(y∗1i>0, y∗3i≤0, y∗4i≤0)

(6.50)

The probabilities in both the numerator and denominator of the last fraction are in the form of
(6.41). Conditional probabilities of the form presented here, however, are easier to approximate
directly by the GHK algorithm, rather that approximating the ratio of joint probabilities. This
is because the algorithm itself works by successive conditioning of joint probabilities.

The expression in (6.49) can be used to make predictions about the value of the probability
on the left-hand side. The marginal effect itself can be approximated using finite differences.
One thing to notice here is that, if an independent variable appears in the equation for y∗mi as
well as in the equation for at least another y∗ℓi, then a change in this variable will affect the
probabilities in both the numerator and denominator. Furthermore, even if an independent
variable does not appear in the equation for y∗mi, it can still affect Prob

(

ymi=1|yi/m=z/m
)

through its effect on Prob
(

yi/m=z/m
)

in the denominator of (6.49).
We now turn back to Example 6.3, where we used a multivariate Probit model to examine

the effect of socioeconomic and demographic characteristics on the probability of investing in
the stock market, having other types of savings, and being a homeowner. In the following part
of this example we calculate both types of marginal effects presented above.

� Example 6.3 Saving and Investing (Continued)
We will use here again part of the dataset constructed through the 2017 Cooperative Congressional
Election Study (Schaffner & Ansolabhere, 2019) and the multivariate-Probit model:

investor∗i = β11 + β12agei + β13educi + β14malei + β15faminci + ε1i
savings∗i = β21 + β22agei + β23educi + β24malei + β25faminci + ε2i

homeowner∗i = β31 + β32agei + β33educi + β34malei + β35faminci + ε3i
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The marginal effects of each independent variable on the probability of success for each response
variable, marginally with respect to the values of the remaining response variables are presented in
the following table. These marginal effects are calculated at the sample means of the independent
variables. We can see from this table, for example, that an increase of the age of an individual by
a year increases the probability of this individual being an investor by 0.41%, having other forms of
savings by 0.60%, and being a homeowner by 0.96%. Similarly, being male increases the probability of
investing in the stock market by 10.3% and the probability of having other forms of savings by 11.0%,
while it reduces the probability of home ownership by 0.35%, although the 90% credible interval for
the last marginal effect contains zero. Given that each latent dependent variable in the multivariate
Probit model follows, marginally with respect to the remaining latent dependent variables a univariate
Normal distribution, the values of these marginal effects should be close to those obtained by running
three independent univariate Probit models.

Mean Median Sd.dev. 5% 95%

dProb(y1=1)/dx
age 0.00412872 0.00412792 0.000435779 0.00341427 0.00484702
educ 0.0564497 0.0564375 0.00534948 0.0476976 0.0653133
*male 0.103289 0.103315 0.0147816 0.0789707 0.127619
faminc 0.0598866 0.0598741 0.00251633 0.0557611 0.0640417

dProb(y2=1)/dx
age 0.00604344 0.00604502 0.000440553 0.00532363 0.00677011
educ 0.0551519 0.0551641 0.00555627 0.0459007 0.0642902
*male 0.109791 0.109865 0.0146639 0.0855691 0.133709
faminc 0.0688234 0.0688014 0.00262152 0.0645015 0.073151

dProb(y3=1)/dx
age 0.00964734 0.00964778 0.000432773 0.00893693 0.01036
educ 0.00469271 0.00465784 0.00526681 -0.0038771 0.0135131
*male -0.00350548 -0.00361579 0.0146345 -0.0274549 0.020458
faminc 0.051732 0.051731 0.00247665 0.0476768 0.0558198

*Marginal effect is calculated for discrete change from 0 to 1.

Using a multivariate Probit model instead of multiple univariate Probit ones can reveal more
information on the interrelationship of the response variables and the marginal effects. The following
table presents marginal effects of the independent variables in the model on the probability of success
of each dependent variable, conditional on the remaining response variables being equal to one. For
example, the first block of the table contains marginal effects of the form:

∂ Prob
(

y1i=1
∣

∣y2i=1, y3i=1,Xi

)

∂xℓik

for all independent variables, xℓik, in the model.

Mean Median Sd.dev. 5% 95%

dProb(y1=1)/dx
age 0.00136771 0.0013865 0.00161165 -0.00133307 0.0039956
educ 0.0449023 0.0449377 0.0216666 0.00961775 0.0806608
*male 0.0795244 0.0796626 0.0222757 0.0428292 0.115982
faminc 0.037942 0.0379786 0.0125245 0.017199 0.0582635

dProb(y2=1)/dx
age 0.00184107 0.00183701 0.000482143 0.00105529 0.00264311
educ 0.0132836 0.0132483 0.00626243 0.00309367 0.0236947
*male 0.0297062 0.0295972 0.00861738 0.0157202 0.0439751
faminc 0.0186869 0.0186443 0.00384257 0.012451 0.0250804

dProb(y3=1)/dx
age 0.00763243 0.00763314 0.000543023 0.00673871 0.00852946
educ -0.00552058 -0.00555597 0.00670174 -0.0165713 0.00553625
*male -0.0208181 -0.0208736 0.0132155 -0.0424709 0.00096068
faminc 0.0345723 0.0346319 0.00383884 0.028212 0.040712

*Marginal effect is calculated for discrete change from 0 to 1.
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The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/CCES2017.csv");

// generate a constant term

Data.constant = 1;

// run the model

myMVProbit = mvprobit( {

investor ∼ constant age educ male faminc,

savings ∼ constant age educ male faminc,

homeowner ∼ constant age educ male faminc

} );

// print the posterior mean of Sigma

print(myMVProbit.Sigma);
✝ ✆

6.7 Synopsis

This chapter introduced and covered in detail the models which are most widely-used to un-
cover the causal effects of a set of independent variables on a qualitative response variable.
Attention was restricted to response variables which can be in only one of two states: true/-
false, success/failure, 0/1, etc. The statistical setup of these models started with the index-
function representation, before showing that the latent-variable representation is an equivalent
way of looking at the problem. Binary-choice models were also motivated using the random-
utility framework. The approach of estimating binary Probit and Logit models using data
augmentation and the latent-variable representation was described next. Interpretation of the
models’ parameters and marginal effects followed, before extending the models to account for
group-specific unobserved heterogeneity when panel data are available. Finally, a multivariate
generalization of the binary-Probit model was presented as a simple combination of concepts
from univariate-Probit and SUR models.

The models covered in this chapter are extended in the following chapter to accommodate
qualitative variables which can be in one of more than two states. The discussion there is
heavily based on the ideas and techniques presented in this chapter and the reader will be
referred back to the relevant concepts and results on multiple occasions.



Chapter 7

Models for Multiple Discrete Response

7.1 Overview

This chapter extends the binary-response models, introduced in Chapter 6, to the case of re-
sponse variables that can be in one out of a finite set of states. In these models the response
variable is still qualitative and the quantity being modeled is the probability of one outcome oc-
curring or alternative chosen, out of a fixed set of mutually exclusive and collectively exhaustive
outcomes/alternatives. As in binary-response models, there are two equivalent representations
of the models: one based on directly specifying the probability of an outcome occurring as a
function of independent variables and another based on the random-utility framework.

Although discrete-response/discrete-choice models with multiple outcomes/alternatives can
be viewed as direct extensions to binary-response models, complications arise both in terms
of interpretation of the results and in estimation. In this chapter we cover models in which
it is either undesirable or impossible to find a criterion according to which the available out-
comes/alternatives can be ordered objectively, given the context of the problem. The response
variable will be coded using integer values for ease of reference, but this does not mean that,
for example, the outcome being assigned code 2 is, in any objective way, preferable to the out-
comes assigned codes 0 or 1 or, more generally, that outcome 2 is further away from outcome
0 than outcome 1 is, in any meaningful dimension.1 Regarding the nature of the independent
variables, there are two broad classes of models: those in which the independent variables vary
by the unit of analysis, called multinomial models and those in which the independent variables
vary by outcome and possibly by unit of analysis, called conditional models . Conditional mod-
els are more general than multinomial, but notation for the former is more cumbersome and
interpretation of the results considerably more challenging. Therefore, multinomial models will
be used when introducing the mathematical setup of discrete-choice models, as well as when
presenting the estimation techniques. Conditional models are presented in Section 7.4, where
it is also shown how multinomial models can be viewed as restricted versions of conditional
models. Before doing so, however, the following section discusses in more detail the conceptual
background behind discrete-response models with more than two outcomes.

7.2 The Nature of Discrete-Response Models

Discrete-response/discrete-choice models are used to draw inferences in problems where the
response variable is qualitative and it can be in one out of a fixed number of states. As

1Models for which the the response variable has an ordinal interpretation are covered in Chapter ??.
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in binary-response models, which form a subset of discrete-response models, interest revolves
around the probability of the response variable being in a specific state and how this probability
is affected by the independent variables. A few examples on which multiple discrete-response
models can be applied are:

� a customer buys a specific brand of milk during a visit to the grocery store out of three
brands being offered at the store, plus the option of not purchasing milk at all (four
alternatives in total)

� an employee of a large company commutes to work by car, public transportation, on foot,
by bike or works from home (five alternatives in total)

� an individual chooses whether to pursue a college degree in formal sciences, natural
sciences, social sciences, or not to go to college at all (four alternatives in total)

� a voter choses to vote for one out of four candidates who run for office or not to vote
(five alternatives in total)

Notice that in all these examples the decision maker has to choose one and only one alternative.
By saying that the available alternatives are collectively exhaustive we mean that the decision
maker has to select one of them. This is why the outside option (not buying any brand of
milk/not commuting/not going to college/not voting) was included in the choice set. Another
way of saying that an individual cannot choose more than one alternatives is to say that the
alternatives are mutually exclusive. Notice also that in none of the examples is it reasonable
to assume that one of the available alternatives is, in any objective way, better than another
for all decisions makers. One alternative will be chosen by each decision maker and this, as
will assume throughout, is the one that maximizes his/her utility. But which alternative leads
to maximum utility depends on the characteristics of the individual or the attributes of the
alternative.

Although the context of individual choice is by far the most widely used in economics and
marketing, this is not the only context in which multinomial and conditional models can be
used. Indeed, statistical procedures designed to deal with problems where the response variable
is categorical can be viewed as general classification methods, having applications in fields like
medicine, natural language processing or pattern recognition. For example, a multinomial
model can be used to model the probability of an individual having a specific blood type,
given the values of relevant characteristics. Even though there is no choice to be made by the
individual here, the statistical methods described in this chapter can be applied to this case
without any modification. Nevertheless, we will present multinomial and conditional models
in the context of individual choice and keep using the associated terms (for example we use
the term discrete-choice model rather than discrete response), as this approach helps with the
understanding of the underlying concepts.

To provide a general treatment of discrete-choice models that does not depend on the
“labels” of the alternatives in the choice set (which are specific to each problem), we will map
the alternatives to consecutive integer values. In this setup, each individual has to choose
one out of M+1 alternatives and we will start numbering alternatives from zero. Using this
numbering convention is convenient because it makes apparent that by setting M to one we
can revert to binary-choice models. Coded in this way, the response variable for individual i
in the population, yi, can assume any integer value from zero to M . As in binary-response
models, because the mapping from alternatives to integers is ad hoc (any other mapping is
equally valid), it does not make sense to use as the dependent variable in a model yi directly.
Instead, discrete-choice models specify the probability of yi assuming a particular value in the
set {0, 1, . . . ,M} and model this probability.

7.3 Multinomial Models

The objective of multinomial models is to express the probability of individual i in the pop-
ulation choosing alternative m ∈ {0, 1, . . . ,M} as a function of individual characteristics and
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parameters, and then estimate the associated parameters and marginal effects. Mathemati-
cally, the probability of interest is Prob(yi = m|x′

iβm), which we will denote by pmi. This
is a conditional probability, with xi being a K×1 vector of independent variables (individual
characteristics) and βm the correspondingK×1 vector of parameters. Notice that the vector of
parameters is specific to each each alternative, m, but the independent variables vary only by
individual (are common to all alternatives). This is the feature that distinguishes multinomial
from conditional models, with the independent variables in the latter varying also by alterna-
tive. These probabilities enter the probability mass function of yi, which naturally follows a
categorical distribution:

p(yi|xi) =

M
∏

m=0

p
1(yi=m)
mi (7.1)

where 1(·) is the indicator function. The categorical distribution is a direct extension of the
Bernoulli distribution to the case of M > 1 and, although simple, it is often confused with
the multinomial distribution. This confusion is largely responsible for calling this class of
discrete-choice models multinomial , although a more appropriate name would be categorical
models.2

The specification of a multinomial model is complete once the form of the probabilities,
pmis, is specified as a function of the individual characteristics. For each individual i, these
probabilities must be non-negative and sum across alternatives to unity. Similarly to binary-
choice models, two specifications are used frequently in practice. The first one is:

pmi =
ex

′

iβm

M
∑

ℓ=0

ex
′

iβℓ

, m = 0, 1, . . . ,M (7.2)

which gives rise to the multinomial Logit model. Not all βms can be identified here, because
multiplying all βms by the same constant, z, will leave the probabilities unaffected. This issue
can be easily resolved by normalizing β0 to a vector of zeros, as we implicitly did in the binary
Logit model.

In the second specification, which leads to the multinomial Probit model, the pmis are
specified as multidimensional integrals on a continuous random vector, u, which is assumed
to follow an M -dimensional Normal distribution with mean that depends on xi and the βms,
and precision matrix Ω:

pmi =



























0
∫

−∞

· · ·
0
∫

−∞

|Ω|1/2

(2π)
M/2

exp

{

− (u−Xiβ)
′
Ω (u−Xiβ)

2

}

du if m = 0
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· · ·
∫

A1
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(2π)M/2
exp
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− (u−Xiβ)
′
Ω (u−Xiβ)

2

}

du if m > 0

(7.3)

and the range of integration in the second branch is Am = (0,+∞), and Aℓ = (−∞, um] for
ℓ 6=m. The mean vector of the multivariate-Normal distribution, is the product of:

Xi
M×(M·K)

= IM ⊗ x′
i =











x′
i 0 · · · 0
0 x′

i · · · 0
...

...
. . .

...
0 0 · · · x′

i











and β
K×1

=











β1

β2
...

βM











2To be fair in this criticism, if the probability of yi being equal to m is not conditioned on any independent
variables, then the pms themselves become the parameters of the model and they can be estimated using a
multinomial, rather than a categorical distribution. This is because, when the probability of each outcome
occurring is the same for all individuals, then the information contained in the data can be summarized
completely by the number of observed values in each category. This number is what the multinomial distribution
models directly.
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Notice that in the way β is defined here, it does not contain β0 and this is because we
normalize it to a vector of zeros for identification purposes. Ω is an M×M precision matrix
to be estimated. However, as it is the case in the binary Probit model, the parameters of a
multinomial Probit model cannot be identified unless some restrictions are imposed on them.
This is because, if β is multiplied by any positive number, z, and Ω is multiplied by z−

1
2 , then

the probabilities in (7.3) will remain unaffected. This issue is usually resolved by restricting Ω
and we will discuss some approaches for doing so when we present the procedure for estimating
the model’s parameters.

7.3.1 The Random-Utility Setup and the Latent-Variable Representation

The random-utility setup can be used as an underlying framework for multinomial models in
the same way as for binary-choice models. We consider an individual i, who maximizes utility
by choosing one out of M+1 mutually exclusive and collectively exhaustive alternatives. For
each alternative, m, we assume that the unobserved utility that the individual derives from it,
u∗
mi, is a linear function of this individual’s characteristics, xi, plus statistical noise:

u∗
0i = x′

iγ0 + ǫ0i
u∗
1i = x′

iγ1 + ǫ1i
...

...
...

u∗
Mi = x′

iγM + ǫMi

(7.4)

Because utility has only ordinal meaning, the ordering of preferences remains the same when
we add or subtract a number from the right-hand side of all these equations. Thus an equiva-
lent way of representing the individual’s preferences is obtained by subtracting x′

iγ0 from all
equations:

u∗
0i = 0 + ǫ0i

u∗
1i = x′

iβ1 + ǫ1i
...

...
...

u∗
Mi = x′

iβM + ǫMi

(7.5)

where βm≡γm − γ0 for all m. Notice that, by construction, β0 is normalized to a vector of
zeros, as required for identification also in the direct setup of the models.

As in binary-choice models, the role of statistical noise is to capture any uncertainty with
respect to the mechanism that determines the utility levels from the part of the researcher. This
uncertainty could be due to, for example, unobserved characteristics of the decision maker that
affect their tastes, deviations of the true mechanism from linearity and so on. This uncertainty
has nothing to do with the decision makers themselves, who we will assume know exactly how
much utility they derive from each alternative.

Utility maximization implies that individual i will choose alternative m if u∗
mi>u∗

ℓi for all
ℓ 6=m. However, because of the noise terms in the specification of the utility levels, we can only
make probabilistic statements about the alternative being chosen. Let yi be an integer-valued
random variable, the value of which indicates the alternative that the individual chooses; thus
yi can assume values in the set {0, 1, . . . ,M}.3 Then, the probability of alternative m being
chosen is:

pmi ≡ Prob(yi = m|xi)

= Prob
(

u∗
mi > u∗

ℓi ∀ℓ 6= m
∣

∣

∣xi

)

= Prob
(

x′
iβm + ǫmi > x′

iβℓ + ǫℓi ∀ℓ 6= m
∣

∣

∣
xi

)

= Prob
(

ǫℓi < ǫmi + x′
i (βm − βℓ) ∀ℓ 6= m

∣

∣

∣xi

)

(7.6)

3Notice that the u∗
mis are not observable because they represent utility levels. However, the yis are observable

as they are simply codes for the choices that each individual i makes.
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If, for the moment, we treat ǫmi as given, this probability is equal to the joint cumulative density
function of all ǫℓis, ℓ 6= m, evaluated at an M -dimensional vector with all elements equal to
ǫmi+x′

i (βm − βℓ). To continue with the analysis we need to impose distributional assumptions
on the ǫℓis. Following McFadden (1974),4 we will first assume that ǫℓi, ℓ = 0, 1, . . . ,M , is
independent from all other error terms and follows a type I extreme-value distribution, with
probability density and cumulative density functions:

p(u) = e−u exp
{

−e−u
}

and P(u) = exp
{

−e−u
}

(7.7)

respectively. Because the error terms are assumed to be independent, the cumulative density
function implied by (7.6), but conditional on ǫmi, can be expressed as the product of the
individual cumulative density functions:

Prob
(

ǫℓi < ǫmi + x′
i (βm − βℓ) ∀ℓ 6= m

∣

∣

∣xi, ǫmi

)

=
∏

ℓ 6=m

exp
{

−e−ǫmi−x′

i(βm−βℓ)
}

(7.8)

Of course, the researcher does not observe the value of ǫmi and this can be integrated out from
the probability:

pmi =

∞
∫

−∞

∏

ℓ 6=m

exp
{

−e−u−x′

i(βm−βℓ)
}

× e−u exp
{

−e−u
}

du (7.9)

Carrying-out the integration leads to the choice probabilities presented in equation (7.2).5

McFadden (1974) also shows that the relationship holds in the other direction: the only distri-
bution for the ǫmis consistent with the choice probabilities in (7.2) is the type-I extreme-value
distribution.

Although leading to choice probabilities that have a closed form and are relatively easy to
work with, the distributional assumption imposed on the ǫmis imposes a restrictive structure
on the relationships among these probabilities. In particular, consider the odds ratio between
alternatives m and ℓ:

pmi

pℓi
=

ex
′

iβm

ex
′

iβℓ
= ex

′

i(βm−βℓ) (7.10)

This odds ratio does not depend on any parameters other than the ones specific to the two
alternatives being considered and suggests that the inclusion or exclusion of any alternative
other than m and ℓ in the choice set is irrelevant for the choice between m and ℓ. This
property of the multinomial Logit model is accordingly termed Independence of Irrelevant
Alternatives(IIA) and can lead to predictions about choices that are rather unreasonable. The
blue bus/red bus example, which is due to McFadden (1974), illustrates this point.6 Consider
an individual who has two options for her daily commute to work: taking a red bus or driving.
Given her characteristics and the model’s parameters, suppose that the commuter is equally
likely to choose any of the two alternatives. Thus, the odds ratio between taking the red bus
and driving is one. Suppose now that a third option for commuting to work is added: a blue
bus, which is similar to the red bus in every respect except color. Assuming that the commuter
does not care about the color of the bus, we could expect her to be equally likely to take the
red or blue bus and twice as likely to drive to work. This is because the original probability of
taking a bus is now split equally between the red and blue bus, while the probability of driving
remains unchanged. Given this intuitive argument, we would expect the odds ratio between
taking the red bus and driving to drop to 1/2. However, the multinomial Logit model cannot

4McFadden derived the choice probabilities for the conditional Logit model, rather than the multinomial
Logit, and did not assume that the parameters enter the specification of the utility levels linearly. However,
the mathematical procedures are not affected by these differences.

5This is done by collecting terms that involve e−u and then integrating by changing the integration variable
to s = e−u. See Train (2009, pp.74-75) for a detailed derivation.

6The example was presented in McFadden (1974) in the context of the conditional Logit model, where also
the attributes of the alternatives affect individual choice.
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take into account the fact that the two buses are perfect substitutes and treats the blue bus
option as irrelevant when predicting the odds ratio between the red bus and car. Thus, the
multinomial Logit model will keep predicting equal probabilities between taking the red bus
and driving to work, even after the blue bus is added to the choice set.

The source of IIA in the multinomial Logit model is the assumption that the error terms
in (7.4) are independent. There are two alternative ways to impose a less restrictive structure
on these error terms that lead to mathematically tractable models: (i) assume that the ǫmis
follow a generalization of the extreme-value distribution and (ii) assume that the ǫmis follow a
multivariate-Normal distribution. The first approach can lead to a variety of models, with the
most widely used one being the nested Logit . The second approach leads to the multinomial
Probit model. We will cover only the multinomial Probit model here and direct the reader
to Chapter 4 in Train (2009) for a discussion of discrete-choice models that are based on
generalized exterme-value distributions.

To derive the choice probabilities for the multinomial Probit model we could collect the
M+1 ǫmis into an (M+1)×1 vector and assume that it follows a multivariate-Normal distri-
bution. Then we could continue in the same way as in the multinomial Logit model. Although
valid, taking this approach will lead to integrals that will be very difficult to work with. In-
stead, we will transform the utility equations in (7.4) yet once more by expressing them in
terms of differences in utility. This will also serve as a way of introducing the latent-variable
representation of multinomial models. Let y∗mi=u∗

mi−u∗
0i be the difference between the utility

that individual i derives from alternatives m and 0. By subtracting u∗
0i from both sides of all

equations in (7.4) we obtain:
y∗0i = 0
y∗1i = x′

iβ1 + ε1i
...

...
...

y∗Mi = x′
iβM + εMi

(7.11)

where, βm = γm−γ0 and εmi = ǫmi−ǫ0i. In terms of these differences in utility levels, the
individual’s decision process is the following:

� individual i will choose alternative 0 if y∗ℓi < 0 for all ℓ = 1, 2, . . . ,M . This is because
u∗
0i is the maximum possible utility across all M+1 alternatives if and only if all y∗ℓis are

negative.

� individual i will choose alternative m 6=0 if y∗mi > 0 and y∗mi >y∗ℓi for all ℓ 6=m. This is
because u∗

mi is greater than all other u∗
ℓis if and only if y∗mi is greater than all other y∗ℓis

and positive.

Putting these results into a single expression leads to the latent-variable representation of
multinomial models:

y∗1i = x′
iβ1 + ε1i

y∗2i = x′
iβ2 + ε2i

...
...

...
y∗Mi = x′

iβM + εMi

yi =



















0 if maxj
{

y∗ji
}

≤ 0

1 if maxj
{

y∗ji
}

= y∗1i and y∗1i > 0
...

...
...

...
...

M if maxj
{

y∗ji
}

= y∗Mi and y∗Mi > 0

(7.12)

Notice that, by specifying the problem in terms of the differences in utility level between each
alternative and alternative 0, we have reduced the dimension of the problem from M+1 to M .

It is stressed that this representation encompasses both multinomial Logit and Probit mod-
els. The difference between the two models stems from the distributional assumption on the
error terms in the last expression. In the multinomial Logit model each ǫℓi is assumed to follow
a type I extreme-value distribution and, as we showed in footnote 3 on page 95, each difference
of the from εℓi≡ǫℓi−ǫ0i follows a standard-Logistic distribution. Even in the multinomial-Logit
case, however, the εℓi are not independent from each other, by construction.7 For this reason,

7This is because each εℓi is constructed using the same ǫ0i, which is a random variable. In fact, the M εℓis
jointly follow a multivariate-Logistic distribution, as defined in Malik & Abraham (1973).
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it is easier for this model to work with the original ǫℓis, as we did above. In the multinomial
Probit model we assume that the M+1 ǫℓis follow a multivariate-Normal distribution with
mean equal to a vector of zeros. This implies that the M×1 vector εi=

[

ε1i ε2i · · · εMi

]′

also follows a multivariate-Normal distribution with mean 0. The εℓis are, again, not indepen-
dent form each other and this is now due, not only to the way they are constructed, but also
due to the possibility of the underlying ǫℓis being dependent. Since in the multinomial Probit
model we have to work with dependent error terms, whether these are the original ǫℓis or the
transformed εℓis, it is slightly easier to use the transformed error terms, as this reduces the
dimensionality of the problem from M+1 to M .

Let Ω denote the M×M precision matrix of εi in the multinomial Probit model. Then,
y∗
i =

[

y∗1i y∗2i · · · y∗Mi

]′
follows a multivariate-Normal distribution with mean Xiβ, where

Xi and β are as defined below equation (7.3). We can now express the probability of individual
i choosing an alternative in terms of the differences in utility levels. This is easy to do for m=0
because the probability we need to calculate can be directly expressed as the cumulative density
function of a multivariate-Normal distribution:

p0i = Prob
(

y∗ℓi < 0 ∀ℓ
∣

∣

∣xi

)

=

0
∫

−∞

· · ·
0
∫

−∞

|Ω|1/2

(2π)
M/2

exp

{

− (y∗
i −Xiβ)

′
Ω (y∗

i −Xiβ)

2

}

dy∗
i

(7.13)

This expression is the same as the upper branch of equation (7.3), with the only difference
appearing in the integration variable (which will of course disappear if we carry-out the inte-
gration). Similarly, for any alternative m 6=0 we get:

pmi = Prob
(

y∗mi>0, y∗mi>y∗ℓi ∀ℓ 6= m
∣

∣

∣xi

)

=

∫

AM

· · ·
∫

A1

|Ω|1/2

(2π)
M/2

exp

{

− (y∗
i −Xiβ)

′ Ω (y∗
i −Xiβ)

2

}

dy∗
i

(7.14)

The range of integration in this M -dimensional integral is Am = (0,+∞), and Aℓ = (−∞, y∗mi]
for ℓ 6=m: we allow y∗mi to assume any positive value and we restrict every y∗ℓi with ℓ 6=m to be
smaller than y∗mi. Save for the variable of integration, this expression is the same as the lower
branch of equation (7.3).

Compared to the rather simple formulas for the choice probabilities implied by the multi-
nomial Logit model, the multidimensional integrals that appear in the choice probabilities of
the multinomial Probit model cannot be expressed in closed form or simplified in any way that
will facilitate parameter estimation. This is the main reason behind the multinomial Probit
model not enjoying the same degree of popularity among economists, at least in frequentist
analyses, as the multinomial Logit model. As we will see in the following subsection, however,
not being able to get closed-form solutions for the choice probabilities does not present major
challenges when a Bayesian approach is used.

Before we close this section we note that the parameters of the multinomial Probit model,
as presented here, are not identified. The issue is similar to the one that we encountered in the
binary Probit model and has to do with the scale of the error terms. In particular, multiplying
β by a positive constant, z, and Ω by z−

1
2 leaves the choice probabilities unaffected. Using the

random-utility framework as the underlying theoretical model, we can give economic content
to this issue: returning to the assumed mechanism that determines the utility levels, if we
multiply all equations in (7.4) by z> 0 then the ordering of utility levels will not change and
only lead to a rescaling of the y∗ℓis. This should be expected given that utility values have
only ordinal meaning. This multiplication, however, will alter the variance of the ǫℓis and,
eventually, of the εℓis. The non-identification issue is resolved in the binary Probit model by
restricting the variance of the error term to unity. Now that the model involves M εℓis more
possibilities are available for normalizing the scale of εi and we will review some of them when
discussing estimation of the multinomial Probit model.
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7.3.2 Estimation of the Multinomial Logit Model

The observed-data likelihood for the multinomial Logit model is obtained by plugging the
choice probabilities in (7.2) into the probability mass function of the categorical distribution
in (7.1):

p(y|X,β) =

N
∏

i=1





M
∏

m=0

(

ex
′

iβm

∑M
ℓ=0 e

x′

iβℓ

)

1(yi=m)


 (7.15)

where y is an N×1 vector that stores the values on the response variable (codes of the al-
ternative chosen) for all N potential observations and X is an N×K matrix that stores the
corresponding values of the K independent variables (individual characteristics). We should
also keep in mind that β0 is normalized to a vector of zeros for identification purposes. Al-
though appearing complex, the amount of calculations required to evaluate the complete-data
likelihood at specific parameter values and for a given dataset is rather small. This is because
each potential observation i will contribute to the likelihood function only one of the M+1
terms that appear inside the second product and this term will be the one corresponding to
the alternative chosen. This computational simplification makes the multinomial Logit model
attractive when a frequentist approach is to be used for estimation. In a Bayesian setting,
however, and with the absence of conjugate priors for the βℓs, designing an efficient sampler
is challenging. Nevertheless, data augmentation can be used to simplify the computations.
Using the latent-variable representation of multinomial models in (7.12), the complete-data
likelihood can be expressed as:

p
(

y, {y∗
i }
∣

∣X,β
)

=

N
∏

i=1

p
(

yi
∣

∣y∗
i

)

× p(y∗
i |X,β) (7.16)

where the second factor is the probability density function of a multivariate Logistic distribu-
tion:

p(y∗
i |xi,β) =

M ! exp

{

−
M
∑

ℓ=1

(y∗ℓi − x′
iβℓ)

}

(

1 +
M
∑

ℓ=1

e−(y
∗

ℓi
−x′

iβℓ)
)M+1

(7.17)

The multivariate-Logistic distribution, is defined in Malik & Abraham (1973).
There are a couple of alternative ways of expressing the first factor in the complete-data

likelihood in a single mathematical expression. A convenient one, because it takes a form
similar to the probability mass function of a categorically distributed random variable, is:

p
(

yi
∣

∣y∗
i

)

= 1

(

max
j

{

y∗ji
}

≤ 0

)

1(yi=0)

×
M
∏

ℓ=1

1

(

max
j

{

y∗ji
}

= y∗ℓi > 0

)

1(yi=ℓ)

(7.18)

All parameters in the multinomial Logit model are contained in the (M ·K)×1 vector β.
Using a Normal prior for β, with mean vectorm and precision matrix P, a standard application
of Bayes’ theorem results in:

π
(

β, {y∗
i }
∣

∣y,X
)

∝ p
(

y, {y∗
i }
∣

∣X,β
)

p(β)

=

N
∏

i=1

[

1

(

max
j

{

y∗ji
}

≤ 0

)

1(yi=0)

×
M
∏

ℓ=1

1

(

max
j

{

y∗ji
}

= y∗ℓi > 0

)

1(yi=ℓ)

×M ! exp

{

−
M
∑

ℓ=1

(y∗ℓi − x′
iβℓ)

}(

1 +

M
∑

ℓ=1

e−(y
∗

ℓi−x′

iβℓ)

)−(M+1)




× |P|1/2

(2π)
K/2

exp

{

−1

2
(β −m)

′
P (β −m)

}

(7.19)
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Although this expression looks intimidating, many of the terms will drop from it when deriving
the full conditionals for β and the y∗

i s, as it was the case also in binary-choice models. Dropping
the multiplicative terms that do not involve β leads to the full conditional:

π (β|•) ∝
N
∏

i=1











exp

{

−
M
∑

ℓ=1

(y∗ℓi − x′
iβℓ)

}

(

1 +
M
∑

ℓ=1

e−(y
∗

ℓi−x′

iβℓ)
)M+1











× exp

{

− (β −m)′ P (β −m)

2

}

(7.20)

This density does not belong to any known parametric family and direct sampling from it is
not possible. However, a Metropolis-Hastings step is, as always, feasible.

Given β, y∗
i follows is a multivariate Logistic distribution, truncated to an appropriate

range. For example, if yi = 0 only the term 1

(

maxj
{

y∗ji
}

≤ 0
)

in (7.18) depends on y∗
i and

the resulting full conditional is:

p(y∗
i |xi,β, yi = 0) ∝

exp

{

−
M
∑

ℓ=1

(y∗ℓi − x′
iβℓ)

}

(

1 +
M
∑

ℓ=1

e−(y
∗

ℓi−x′

iβℓ)
)M+1

1

(

max
j

{

y∗ji
}

≤ 0

)

(7.21)

Similar simplifications take place for any value of yi other than zero. Frühwirth-Schnatter &
Frülhwirth (2012) provide an algorithm for sampling from these complete conditionals, which
is based on first sampling for the underlying ǫℓis.

These results are summarized in Theorem 7.1. An application of the multinomial Logit
model is presented in Example 7.1.

THEOREM 7.1: Full Conditionals for the Multinomial Logit Model
In the multinomial Logit model with M+1 alternatives and K independent variables:

y∗
i = Xiβ + εi, εi ∼ Logistic (0,1)

yi =



















0 if maxj
{

y∗ji
}

≤ 0

1 if maxj
{

y∗ji
}

= y∗1i and y∗1i > 0
...

...
...

...
...

M if maxj
{

y∗ji
}

= y∗Mi and y∗Mi > 0

and with a Normal prior for β:

p(β) =
|P|1/2

(2π)
MK/2

exp

{

−1

2
(β −m)

′
P (β −m)

}

the full conditional of β is:

π (β|•) ∝
N
∏

i=1











exp

{

−
M
∑

ℓ=1

(y∗ℓi − x′
iβℓ)

}

(

1 +
M
∑

ℓ=1

e−(y
∗

ℓi−x′

iβℓ)
)M+1











× exp

{

−1

2
(β −m)

′
P (β −m)

}

The full conditional of y∗
i , i = 1, 2, . . . , N , is proportional to an M -dimensional Logistic
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probability density function, restricted to specific range, depending on the value of yi:

p
(

y∗
i

∣

∣•
)

∝























exp{−∑M
ℓ=1(y

∗

ℓi−x′

iβℓ)}
(

1+
∑M

ℓ=1 e
−(y∗ℓi−x

′

i
βℓ)
)M+11

(

maxj
{

y∗ji
}

≤ 0
)

if yi = 0

exp{−∑M
ℓ=1(y

∗

ℓi−x′

iβℓ)}
(

1+
∑

M
ℓ=1 e

−(y∗ℓi−x
′

i
βℓ)
)M+11

[

maxj
{

y∗ji
}

= y∗mi > 0
]

otherwise

� Example 7.1 Preferred Method of Balancing the Budget
In this example, we will use again part of the dataset constructed through the 2017 Cooperative
Congressional Election Study (Schaffner & Ansolabhere, 2019), which we first used in example 6.3.
We will use here 5,000 randomly drawn observations from the original 18,200 observations contained
in the dataset and the following variables:

action : stated preferred action for Congress to balance the budget; the available choices
are coded as:
0 - “Cut Defense Spending”
1 - “Cut Domestic Spending”
2 - “Raise Taxes”

age : age of the respondent in years
educ : educational level of the respondent, coded from 1 to 6 with larger values corre-

sponding to higher educational level
male : dummy variable: 1 if the respondent is male

homeowner : dummy variable: 1 if the respondent owns their own home
ideology : self-reported political viewpoint, coded from 1 (very liberal) to 5 (very conservative)
faminc : annual family income bracket, coded from 1 (less that $10,000) to 16 (more than

$500,000) and increasing by $10,000 when income is bellow $100,000 and by larger
amounts after that

We will assume that the utility each individual derives from each possible action taken by Congress
is a linear function of the individual’s characteristics:

action∗mi = γ1m+γ2magei+γ3meduci+γ4mmalei+γ5mhomeowneri+γ6mideologyi+γ7mfaminci+ǫmi

for m = 0, 1, 2 and where each ǫmi follows a type I extreme-value distribution. This specification leads
to a multinomial Logit model with three alternatives. The results obtained using BayES’ mnlogit()
function to estimate this model are presented in the following table.

Mean Median Sd.dev. 5% 95%

action = 1
constant -3.39487 -3.39701 0.219936 -3.77262 -3.02478
age 0.00746804 0.00750233 0.00246472 0.00338422 0.0115466
educ -0.0949643 -0.0952437 0.0284275 -0.141041 -0.0484418
male -0.00753653 -0.00931138 0.07004 -0.120805 0.111782
homeowner 0.0983611 0.0983883 0.0855046 -0.0435998 0.238013
ideology 0.981247 0.9804 0.0376342 0.920353 1.04508
faminc 0.0101913 0.0101737 0.0132354 -0.0116894 0.0321513

action = 2
constant -2.01301 -2.02137 0.182642 -2.30012 -1.70194
age 0.0259051 0.0258871 0.00235707 0.0220072 0.0298638
educ -0.0652364 -0.0645008 0.0280207 -0.112605 -0.020312
male -0.157204 -0.156578 0.0756974 -0.282729 -0.0335256
homeowner -0.134969 -0.135067 0.0892559 -0.286894 0.00819727
ideology 0.224584 0.224245 0.0347081 0.167559 0.28273
faminc -0.0261602 -0.0261855 0.0134347 -0.0480857 -0.00412205

There are a couple of things to note here. First, there are no parameter estimates for the base
category (m = 0; “Cut Defense Spending”). The two blocks of the table correspond to parameters
βm ≡ γm− γ0 for m = 1 (“Cut Domestic Spending”) and m = 2 (“Raise Taxes”). Second, the
90% credible intervals for most βs does not contain zero but, because the choice probabilities in the
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multinomial Logit model are not linear in the parameters, we cannot interpret the magnitude of the
βs; we should instead calculate marginal effects on the choice probabilities. However, these marginal
effects are highly non-linear functions of the βs and not guaranteed to have the same sign as the
corresponding parameters. Therefore, contrary to the binary Logit model, we should refrain from
interpreting even the sign of the βs in a multinomial Logit model.

Obtaining the results presented above using BayES can be achieved using the code in the following
box. We note that due to the Metropolis-Hastings step used for sampling from the full conditional of
β, as well as to the many latent variables (y∗

i s), the multinomial Logit model is plagued by very large
inefficiency factors. For this reason, a large burn-in and a large value for the thinning parameter was
chosen in the code below. Further post-estimation analysis of the results, such as plotting the draws
from the posterior distribution of the parameters, is highly recommended.

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/CCES2017.csv");

// generate a constant term

Data.constant = 1;

// run the multinomial-Logit model

myMNLogit = mnlogit( action ∼ constant age educ male homeowner ideology faminc,

"draws"=20000, "burnin"=20000, "thin"=5, "chains"=2 );
✝ ✆

7.3.3 Estimation of the Multinomial Probit Model

Using the latent-variable representation of multinomial models in (7.12), the complete-data
likelihood for the multinomial model can be expressed as:

p
(

y, {y∗
i }
∣

∣X,β
)

=

N
∏

i=1

p
(

yi
∣

∣y∗
i

)

× p(y∗
i |X,β) (7.22)

where the second factor is the probability density function of a multivariate-Normal distribution
with mean Xiβ and precision matrix Ω. The first factor in this likelihood function can be
expressed in the same way as in the multinomial Logit model (see equation (7.18)). We will
again use a Normal prior for β, with mean vector m and precision matrix P. If we ignore
for the moment the non-identification issue in the multinomial Probit model, we could use a
Wishart prior for Ω, with degrees-of-freedom parameter n and scale matrix V. In this setting
the complete conditionals of β and Ω would be the same as in the SUR model (see Theorem
3.1), with y∗

i taking the place of yi. Similarly to the multinomial Logit model, the complete
conditionals of the y∗

i take the form of the multivariate-Normal density, restricted to a specific
range, depending on the value of yi:
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otherwise
(7.23)

Sampling from the complete conditional of each y∗
i can be done using rejection or Gibbs

sampling.8

The main issue with estimating the parameters of a multinomial Probit model is related
to identification and, as in the binary Probit model, this can be resolved by restricting the
scale of the precision matrix or its inverse. A common way of doing this is by restricting the
first element of Ω−1 to unity. However, if this approach is taken then Ω no longer follows a
Wishart distribution and this complicates sampling from its full conditional. A simple solution
to the arising computational complications is to completely ignore the identification issue
during sampling and transform the draws after sampling is complete. For example, McCulloch

& Rossi (1994) follow this approach and report only σ
−1/2
11 β, where σ11 is the first element

8See footnote 9 on page 109.
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of the unrestricted Ω−1. Although simple, the approach can lead to numerical instability
problems, especially when coupled with vague priors. This is because there is nothing in the

sampling algorithm other than the prior to prevent β and σ
1/2
11 from growing at the same

rate, but possibly without bound. McCulloch et al. (2000) provide an alternative approach
that partitions Ω−1 into three blocks of parameters with full conditionals that are easy to
sample from, while Imai & van Dyk (2005) develop a Gibbs sampler that relies on marginal
data augmentation for restricting σ11 to unity. Restricting the first element of Ω−1 to unity,
however, treats the alternatives asymmetrically and for this reason, Burgette & Nordheim
(2012) modify Imai & van Dyk’s algorithm such that the scale of Ω−1 is fixed by restricting
its trace to be equal to M . Because we have been using mostly precision (as opposed to
covariance) matrices in this textbook, we will present here Burgette & Nordheim’s approach,
while restricting the trace of Ω to M .

We start by defining Ω̆ as an M×M positive-definite matrix and imposing a Wishart prior
on it, with hyperparameters n and V. We then define α2 ≡ tr(Ω̆)/M and Ω ≡ (1/α2) Ω̆. The last

two expressions define a transformation from the unrestricted Ω̆ to
(

α2,Ω
)

, with the trace of
Ω restricted to M . α2 in this transformation will be the working parameter in a marginal data
augmentation context. The determinant of the Jacobian of the transformation can be shown
to be a function of M and an application of the multivariate version of the change-of-variables
theorem leads to the probability density function of

(

α2,Ω
)

. The density of Ω is obtained by

integrating-out α2 from the joint density of
(

α2,Ω
)

and it can be shown to be:

p(Ω) =
M · |Ω|

n−M−1
2 |V−1|n/2

tr (V−1Ω)
nM/2

Γ
(

nM
2

)

ΓM

(

n
2

)
1(tr (Ω) = M) (7.24)

Furthermore, conditional on Ω, α2 follows a Gamma distribution with shape nM/2 and rate
tr(V−1Ω)/2. We can now define the marginal data augmentation mapping, Dα (·), in a way that

facilitates sampling for Ω̆:

y̆∗
i = 1

α (y∗
i −Xiβ) ≡ ε̆i, ε̆i ∼ N

(

0, Ω̆
)

(7.25)

The resulting Gibbs sampler iterates between the steps:

(a) draw ({y∗
i } ,Ω) from the transition kernel, K, of a Markov chain with stationary distribu-

tion p
(

{y∗
i } ,Ω

∣

∣

∣ {yi} ;β
)

. This step requires multiple iterations between the following:

(a1) draw {y∗
i } from p

(

{y∗
i }
∣

∣

∣ {yi} ,Ω;β
)

; this is the multivariate truncated-Normal

distribution given in (7.23)

(a2) draw α2 from p
(

α2
∣

∣Ω
)

; this is a Gamma distribution with parameters a = nM/2

and b = tr(V−1Ω)/2

(a3) transform each y∗
i to y̆∗

i = 1
α (y∗

i −Xiβ)

(a4) draw Ω̆ from p
(

Ω̆
∣

∣

∣
{y̆∗

i }
)

; this is a Wishart distribution as in the SUR model

(a5) set α2 = 1
M tr

(

Ω̆
)

and Ω = 1
α2 Ω̆

(a6) transform each y̆∗
i to y∗

i = αy̆∗
i +Xiβ

(b) draw β from p
(

β
∣

∣

∣
{yi} , {y∗

i } ,Ω
)

= p
(

β
∣

∣

∣
{y∗

i } ,Ω
)

; this is a multivariate-Normal dis-

tribution as in the SUR model

In this algorithm all draws are obtained from standard distributions. Marginal data augmenta-
tion is used only in step (a), while step (b) is a typical conditional draw of the Gibbs sampler.
In steps (a1)-(a3) we sample each y̆∗

i given Ω, but we do so while using α2 as a working
parameter. In steps (a4)-(a5) we effectively sample for

(

Ω, α2
)

given y̆∗
i .

The algorithm requires iterating over steps (a1)-(a6) multiple times within each iteration
of the Gibbs sampler. Burgette & Nordheim (2012) use a vector of zeros as the prior mean for
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β, which leads to an algorithm that does not require an inner loop and, thus, is much more
efficient from a computational standpoint. Such an algorithm is used by BayES when m = 0.

The following example applies the multinomial Probit model the Cooperative Congressional
Election Study dataset and the specification used in Example 7.1.

� Example 7.1 Preferred Method of Balancing the Budget (Continued)
In this example, we will continue working with the 2017 Cooperative Congressional Election Study
dataset (Schaffner & Ansolabhere, 2019) and assuming that the utility an individual derives from each
possible action taken by Congress to balance the budget can be expressed as a linear function of the
individual’s characteristics:

action∗mi = γ1m+γ2magei+γ3meduci+γ4mmalei+γ5mhomeowneri+γ6mideologyi+γ7mfaminci+ǫmi

for m = 0, 1, 2. However, we will now assume that the ǫmis follow a multivariate-Normal distribution
and allow them to be correlated. This assumption implies that εi ≡

[

ǫ1i−ǫ0i ǫ2i−ǫ0i
]′

follows a
bivariate-Normal distribution, the precision matrix of which we denote by Ω. Taken together, the
imposed assumptions lead to a multinomial Probit model with three alternatives. The results obtained
using BayES’ mnprobit() function to estimate this model are presented in the following table.

Mean Median Sd.dev. 5% 95%

action = 1
constant -5.43837 -4.31663 3.61359 -12.754 -2.51101
age 0.0267974 0.0211903 0.0207602 0.00802298 0.0656532
educ -0.166731 -0.136008 0.116675 -0.38381 -0.059719
male -0.0738342 -0.0606747 0.181822 -0.361785 0.165814
homeowner 0.0796718 0.065249 0.198332 -0.182619 0.390793
ideology 1.62346 1.30366 1.04844 0.757805 3.72458
faminc 0.00241351 0.00254456 0.0293319 -0.0396159 0.0441816

action = 2
constant -4.16746 -3.49587 2.57237 -8.94124 -1.78317
age 0.040039 0.0350294 0.0206812 0.0194973 0.0780333
educ -0.13806 -0.113227 0.101639 -0.324423 -0.0368948
male -0.206685 -0.182003 0.17261 -0.507393 0.0109183
homeowner -0.0926144 -0.0905784 0.171672 -0.357769 0.163172
ideology 1.02036 0.797808 0.805694 0.303477 2.55343
faminc -0.0192827 -0.017832 0.0265328 -0.061064 0.0177392

The posterior means of the βs have the same order of magnitude as those from the multinomial Logit
model, but are not particularly close to them. This situation is similar to what we encountered in
binary-respose models: the βs are scaled differently (through the variances of the error terms) in the
two models and, because of this, what we should be comparing is the marginal effects on the choice
probabilities. In the case of multinomial models, however, there is an additional reason for the observed
differences in parameter estimates. This has to do with the flexibility in the dependence of the ǫmis
introduced by the multinomial Probit model. If the Independence of Irrelevant Alternatives does not
hold in a particular application, then we should expect to see these differences propagating to the
marginal effects as, in such a case, the multinomial Logit model would be imposing too restrictive of
a structure on the data.

Obtaining the results presented above using BayES can be achieved using the code in the following
box. Again, due to to the many latent variables (y∗

i s) in the model, very large inefficiency factors are
expected. For this reason, a large burn-in and a large value for the thinning parameter was chosen in
the code below. Post-estimation inspection of the draws from the posterior distribution, such as by
plotting them per chain, is highly recommended.✞ ☎

// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/CCES2017.csv");

// generate a constant term

Data.constant = 1;

// run the multinomial-Probit model

myMNProbit = mnprobit( action ∼ constant age educ male homeowner ideology faminc,

"draws"=20000, "burnin"=20000, "thin"=5, "chains"=2 );
✝ ✆
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7.3.4 Marginal Effects in Multinomial Models

The quantities being modelled in multinomial models are the probabilities of occurrence of
each of the M+1 mutually exclusive and collectively exhaustive outcomes. These probabili-
ties are highly non-linear functions of the parameters and the independent variables: for the
multinomial Logit model these probabilities are given in (7.2), while for the multinomial Pro-
bit in (7.3). For the multinomial Probit model the probabilities cannot even be expressed in
closed form. Because of this non-linear relationship between the quantities of interest and the
independent variables, the effect of a change in, say, the kth independent variable, xik, on the
probability of occurrence of each outcome should be calculated as a partial derivative.

We will first calculate the marginal effects for the Logit model because, at least we have
the probabilities of occurrence in closed form. The change in the probability of outcome m
occurring in this model, caused by a small change in xik is:

∂ Prob(yi=m|xi)

∂xik
=

ex
′

iβm

M
∑

ℓ=0

ex
′

iβℓ











βmk −

M
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βℓke
x′

iβℓ

M
∑

ℓ=0

ex
′

iβℓ











= pmi

[

βmk −
M
∑

ℓ=0

βℓkpℓi

]

(7.26)

where βmk is the kth parameter (coefficient associated with the kth independent variable) in
βm. We should keep in mind that all parameters in β0 are normalized to zero for identification
purposes. pmi≡Prob(yi=m|xi) is a non-negative number and, therefore, when multiplied by
the first summand inside the square brackets, the sign of the product will be the same as the
sign of βmk. However, the second summand inside the square brackets is a non-linear function
of the data and all model parameters and, as such, its sign cannot and magnitude cannot be
determined theoretically. The practical implication of this is that there is no guarantee that
the sign of βmk will be the same as the sign of the associated marginal effect. Thus, contrary to
the binary Logit model, in the multinomial Logit model we should not be tempted to interpret
even the signs of the parameters; the only interpretable quantity of interest is the marginal
effect.

When xi contains binary variables, calculating a derivative with respect to the value of the
dummy variable does not make sense. The corresponding concept of a marginal effect of a
binary independent variable on the probability of outcome m occurring is the difference:

Prob(yi=m|xi1)− Prob(yi=m|xi0) =
ex

′

1iβm

M
∑

ℓ=0

ex
′

1iβℓ

− ex
′

0iβm

M
∑

ℓ=0

ex
′

0iβℓ

(7.27)

where xi0 is a vector that consists of the values of the independent variables at the point at
which the marginal effect is evaluated, but with a zero in the k-th place and xi1 is a similar
vector, but with a one in the k-th place.

The marginal effects in a multinomial Probit model have a similar interpretation as in the
multinomial Logit model and, in theory, should be calculated by differentiating the probabilities
in (7.3). However, these probabilities do not have a closed form and neither do their derivatives.
Bolduc (1999) provides an algorithm for approximating these derivatives, which is based on
the Geweke-Hajivassiliou-Keane (GHK ) algorithm.9 Although measuring the same underlying
concept, marginal effects obtained from a multinomial Logit and a multinomial Probit model
can be substantially different from each other when the IIA assumption imposed by the former
model is violated.

One feature of the marginal effects in multinomial models that is worth noting is that the
sum over all possible alternatives of the marginal effect with respect to an independent variable
is always zero:

M
∑

m=0

∂ Prob(yi=m|xi)

∂xik
= 0, k = 1, 2, . . . ,K (7.28)

9See also footnote 7 on page 107.
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This is straightforward to show for the multinomial Logit model, using the two formulas above
for continuous and discrete xks, but quite more challenging for the multinomial Probit model.
The result itself is not surprising at all: a small change in the kth independent variable will
affect all choice probabilities while enforcing that these probabilities sum to unity, even after
the change.

The following example presents and interprets the marginal effects from the multinomial
Logit and Probit models used in the two preceding parts of Example 7.1 to model the proba-
bility of choosing a proposed action for balancing the budget.

� Example 7.1 Preferred Method of Balancing the Budget (Continued)
We will now calculate and interpret the marginal effects generated by the multinomial Logit and
Probit models, which were estimated in the last two parts of the example using the 2017 Cooperative
Congressional Election Study dataset (Schaffner & Ansolabhere, 2019). The following table presents
these marginal effects from the multinomial Logit model.

Mean Median Sd.dev. 5% 95%

dProb(y=0)/dx
age -0.00379443 -0.00380745 0.000505469 -0.00461301 -0.00294011
educ 0.0202953 0.0202074 0.00589497 0.0106949 0.0299378
*male 0.017625 0.017819 0.0153062 -0.00827157 0.0423618
*homeowner 0.000923984 0.00076394 0.0171921 -0.0271954 0.0294507
ideology -0.162154 -0.162177 0.00726767 -0.174181 -0.150151
faminc 0.0013299 0.00132785 0.00275236 -0.00321471 0.00588073

dProb(y=1)/dx
age -0.000337324 -0.00034084 0.000484574 -0.00113408 0.000469027
educ -0.0156426 -0.0157603 0.00562302 -0.0247207 -0.0062633
*male 0.0101726 0.00984587 0.0135418 -0.0116254 0.0330215
*homeowner 0.0313129 0.0317581 0.0176621 0.00113834 0.0593831
ideology 0.19544 0.195329 0.00692193 0.18433 0.207033
faminc 0.00417935 0.00416939 0.00263937 -0.000145476 0.00850979

dProb(y=2)/dx
age 0.00413176 0.00412524 0.000385711 0.00350517 0.00477069
educ -0.00465276 -0.0046136 0.00461197 -0.0124201 0.00281134
*male -0.0277976 -0.0276025 0.0121285 -0.0481447 -0.00824178
*homeowner -0.0322369 -0.0325666 0.016071 -0.058721 -0.00623916
ideology -0.0332862 -0.0333736 0.0055326 -0.0423157 -0.0240223
faminc -0.00550925 -0.00549959 0.00224092 -0.00920047 -0.0018341

*Marginal effect is calculated for discrete change from 0 to 1.

Contrary to the parameter estimates, where we had two blocks of parameters, we now have three blocks
of marginal effects, with each block containing the marginal effects on one of the three alternatives:

� m=0: “Cut Defense Spending”

� m=1: “Cut Domestic Spending”

� m=2: “Raise Taxes”

From this table we see, for example, that a person who is one year older than the average person
in the sample has 0.379% lower probability of indicating that they prefer alternative 0, 0.034% lower
probability of preferring alternative 1 and 0.413% higher probability of preferring alternative 2. That
these three changes in probability sum to zero is not by coincidence: if older people are more likely to
prefer one alternative then, necessarily, they should be less likely to prefer another alternative, because
the alternatives considered are collectively exhaustive. Additionally, an increase in the educational level
increases the probability of preferring alternative zero, as does being a male, although the 95% credible
interval for the last marginal effect contains zero. The largest impact on the probabilities comes from
the political viewpoint, with people self-reporting themselves as more conservative being more likely
to prefer alternative 1 and less likely to prefer alternatives 0 or 2. An interesting attribute with respect
to the ideology variable is that the coefficient associated with it in alternative 2 is positive (this can
be seen in the parameter estimates from the multinomial Logit model), while the marginal effect is
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negative. As stressed before, in multinomial models there is no guarantee that the sign of the marginal
effect will be the same as the sign of the corresponding parameter.

The following table presents the marginal effects from the multinomial Probit model. As a general
observation, the marginal effects from the this model are quite close to those from the multinomial
Logit model. This is not unexpected, as they both measure the same underlying concept. These
differences are parlty due to the the greater flexibility allowed by the multinomial Probit model in the
relationship between the error terms in the three alternatives.

Mean Median Sd.dev. 5% 95%

dProb(y=0)/dx
age -0.00390703 -0.0039057 0.000480295 -0.00469911 -0.00311865
educ 0.0181802 0.0181492 0.0056827 0.0089015 0.0275763
*male 0.017166 0.0173196 0.0169089 -0.0107641 0.0446347
*homeowner 0.00111666 0.00123993 0.0183443 -0.0290281 0.0313161
ideology -0.15461 -0.154584 0.00733989 -0.166676 -0.14257
faminc 0.00100175 0.000995773 0.00258082 -0.00321711 0.00522696

dProb(y=1)/dx
age -0.000708374 -0.000706684 0.000470647 -0.00148982 6.2426e-05
educ -0.0149808 -0.014955 0.00550868 -0.0241439 -0.00592573
*male 0.0168277 0.0167579 0.015635 -0.00888957 0.0425712
*homeowner 0.0335841 0.0335181 0.0171731 0.00550791 0.0617718
ideology 0.195973 0.195901 0.00739073 0.183937 0.208261
faminc 0.00381987 0.00381856 0.00250139 -0.000307203 0.00793254

dProb(y=2)/dx
age 0.0046154 0.00461087 0.000451577 0.00388337 0.00537312
educ -0.00319934 -0.00323039 0.00488207 -0.0112184 0.00483264
*male -0.0339937 -0.0340452 0.0142383 -0.0570253 -0.0106831
*homeowner -0.0347008 -0.0345522 0.0161238 -0.0612176 -0.0085267
ideology -0.0413633 -0.0413306 0.00641197 -0.0520315 -0.0308671
faminc -0.00482162 -0.00483443 0.00228921 -0.00859132 -0.00105586

*Marginal effect is calculated for discrete change from 0 to 1.

Finally, we can compare the multinomial Logit and Probit models with respect to their ability to
accomodate the features of the data. As the following table shows, with equal prior model probabilities,
the data tend to favor the multinomial Probit model.

Log-Marginal Type of log-ML Prior Model Posterior Model
Model Likelihood Approximation Probability Probability

myMNLogit -4759.96 Lewis & Raftery 0.5 0.149501
myMNProbit -4758.23 Lewis & Raftery 0.5 0.850499

Obtaining the results presented above using BayES can be achieved using the code in the following
box.

✞ ☎
// import the data into a dataset called Data and generate a constant term

Data = webimport("www.bayeconsoft.com/datasets/CCES2017.csv");

Data.constant = 1;

// run the multinomial Logit and Probit models

myMNLogit = mnlogit( action ∼ constant age educ male homeowner ideology,

"draws"=20000, "burnin"=20000, "thin"=5, "chains"=2 );

myMNProbit = mnprobit( action ∼ constant age educ male homeowner ideology,

"draws"=20000, "burnin"=20000, "thin"=5, "chains"=2 );

// calculate marginal effects for the two models at the means of the

// independent variables

mfx( "model"=myMNLogit, "point"="mean" );

mfx( "model"=myMNProbit, "point"="mean" );

// compare the two models

pmp( { myMNLogit, myMNProbit } );
✝ ✆
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7.4 Conditional Models

Conditional models for discrete outcomes are very similar to multinomial models, as far as the
response variable is concerned: yi is still allowed to be in one out of M+1 states and there is
no objective way of ordering the alternatives. The feature that distinguishes conditional from
multinomial models is the nature of the independent variables: while in multinomial models
the independent variables vary only by observation (by individual in a discrete-choice context),
in conditional models the independent variables vary by alternative and possibly by individual.
In mathematical terms, multinomial models express the right hand side of the equation for the
mth latent variable as x′

iβm + ǫmi, but conditional models express the right-hand side of the
same equation as z′miδ+ ǫmi. Notice that the vector of parameters, δ, in the conditional model
no longer has an m subscript, as this subscript has now moved to the vector of independent
variables, zmi.

To make maters concrete we will use an example where individuals living in a given city have
four alternatives for commuting to work: walk, ride a bike, drive or use public transportation.
The idependent variables in a multinomial model would be characteristics of the individual
decision maker that may affect the choice. These characteristics could be income, age, distance
from workplace and so on, and, for any individual i, these characteristics do not vary by the
alternative chosen. In a conditional model the independent variables would be attributes of the
alternative, such as an index of how safe each mode of transportation is in that particular city,
the cost of each alternative or the time it takes for commuting to work by each alternative.
Of course, some attributes could be common to all individuals and some could vary both
by alternative and individual. For example, the time it takes to commute to work by car
could very well be different for two different individuals, but the safety index for each mode of
transportation could be the same for all individuals.

Conditional models for discrete outcomes can be thought of as extensions to multinomial
models because, apart from variables that vary by alternative, they can aslo accommodate
independent variables that vary only by individual, simply by interacting these variables with
alternative-specific dummy variables. Consider the following latent-variable representation of
the model:

y∗1i = z′1iδ + x′
iβ1 + ε1i

y∗2i = z′2iδ + x′
iβ2 + ε2i

...
...

...
y∗Mi = z′Miδ + x′

iβM + εMi

(7.29)

where the variables in the zmis vary by alternative and possibly by individual ,while the
variables in xi vary only by individual. We can express this system of equations in matrix
form as:

y∗
i = Xiβ + εi (7.30)

where:
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and where J , is equal to the number of variables in z plus M times the number of variables in
x. It becomes apparent from Xi that the way xi enters the equation for the mth alternative
is equivalent to constructing a group of independent variables that vary by both individual
and alternative, but the variability in the alternatives dimension comes from interacting the
variables in xi with a dummy variable that is equal to one only for the mth alternative. This
representation also makes clear that, no new estimation procedures need to be developed for
conditional models: once we define Xi appropriately, we can use the same samplers developed
for the corresponding multinomial models.
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Before turning to estimation procedures we need to make an important remark about the
nature of the variables in z. The random-utility framework is frequently used to justify the
latent-variable representation of the model. In this framework we normalize the utility obtained
from the first alternative (denoted by 0) to zero. By doing this in the multinomial model we
normalized the coefficients associated with the first alternative to zero. In a conditional model,
however, not all parameters are specific to an alternative and the previous approach will not
work. Let’s start from specifying the process that determines the utility levels from each
alternative:

u∗
0i = w′

0iδ + x′
iγ0 + ǫ0i

u∗
1i = w′

1iδ + x′
iγ1 + ǫ1i

...
...

...
u∗
Mi = w′

Miδ + x′
iγM + ǫMi

(7.31)

where w0i contains the attributes of alternative 0, possibly specific to individual i, w1i the
attributes of alternative 1 and so on. To express the model in terms of differences in utility we
subtract the first equation from all other equations:

y∗0i = 0

y∗1i = (w1i−w0i)
′
δ + x′

i (γ1−γ0) + (ǫ1i−ǫ0i)
...

...
...

y∗Mi = (wMi−w0i)
′
δ + x′

i (γM−γ0) + (ǫMi−ǫ0i)

(7.32)

where y∗mi ≡ u∗
mi−u∗

0i, m= 0, 1, . . . ,M . To get from this system of equations to the latent-
variable representation in (7.29) we define zmi ≡ wmi−w0i, βm ≡ γm−γ0 and εmi ≡ ǫmi−ǫmi,
for all m = 1, 2, . . . ,M . The practical implication of this normalization is that the variables
in z in the latent-variable representation of the model are the differences of the values of
the attributes of the first alternative from the attributes the remaining M alternatives. In
an empirical application the wmi variables need to be transformed to the zmis before the
conditional model is estimated. This may appear as extra work for the researcher but most
software packages, including BayES, automate the task of creating these differences in the values
of the attributes. Notice that by taking these differences, a conditional model collapses to a
binary-choice model when there are only two alternatives. In such a model the differences in
the attributes between outcome 1 and outcome 0 are inserted in the only place a binary-choice
model has for specifying independent variables: the equation that specifies the probability of
success (outcome 1).

Now that we have seen the main difference between multinomial and conditional models
for discrete choice we can formally define the difference between conditional Logit and Probit
models: in a conditional Logit model the error terms in (7.31) are assumed to be independent
from each other and follow a type I extreme-value distribution, while in a conditional Probit
model10 the error terms for a particular observation i are assumed to follow a multivariate-
Normal distribution. The functional forms of the choice probabilities in the two models are the
same as in the multinomial counterparts, with the only thing changing being the specification
of the right-hand sides of the equations for the latent variables. The conditional Logit model
still imposes the IIA assumption:

pmi

pℓi
=

ez
′

miδ+x′

iβm

ez
′

ℓiδ+x′

iβℓ
= e(zmi−zℓi)

′δ+x′

i(βm−βℓ) (7.33)

although when already controlling for differences in the attributes of each alternative, this
assumption may be much more unrealistic. This is because the odds ratio between alternatives
m and ℓ, as given in the last equation, should naturally depend on whether the attributes of
a third alternative are closer to those of m than ℓ. As it is the case with multinomial models,
the conditional Probit model relaxes the IIA assumption by allowing the error terms in (7.31)
to be correlated across equations.

10Although a Logit model with independent variables that vary by alternative is typically called a conditional
Logit model, this is not the case for Probit models: most authors prefer to still call what we define here as a
conditional Probit, a multinomial Probit model.
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7.4.1 Estimation of Conditional Models for Discrete Choice

The latent-variable representation of a conditional model for discrete choice differs from the
corresponding representation of a multinomial model only in terms of the variables that appear
in the right-hand side of the equations for the y∗mis. In particular, in a conditional model we
get for alternative m:

y∗mi = z′miδ + x′
iβ + εmi (7.34)

while the term z′miδ is dropped in a multinomial model. Similarly, the parameters in a condi-

tional model are β =
[

δ β1 · · · βM

]′
, while the fist block of parameters is missing from a

multinomial model. Given these similarities, only minor modifications need to be made in the
formulas for the full and complete conditionals derived for the multinomial counterparts. If a
multivariate-Normal prior is used for β in a conditional Logit model then the full conditional
for β becomes:
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N
∏
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(7.35)

For a conditional Probit model the full and complete conditionals are those reported in Section
7.3.3 and the only difference between the multinomial and conditional Probit models is in the
way Xi is defined:

Xi =











z′1i x′
i 0 · · · 0

z′2i 0 x′
i · · · 0

...
...

...
. . .

...
z′Mi 0 0 · · · x′

i











(7.36)

in the conditional model, while a multinomial model contains only the block-diagonal part of
the matrix above.

The following example presents an application of conditional models to a problem of mod-
elling the choice of fishing mode by recreational anglers. It uses as independent variables the
attributes of each fishing mode, as well as the characteristics of the individuals.

� Example 7.2 Recreational Fishing Mode
In this example, we will use the dataset constructed by Thomson & Crooke (1991), as used by Herriges
& Kling (1999) to model the mode of fishing chosen by 1182 recreational anglers. The dataset contains
information on 1182 individuals on the following variables:

mode : recreation fishing mode choice:
0 - beach 2 - charter
1 - boat 3 - pier

price_0 : price for beach mode (hundreds of US dollars per trip)
price_1 : price for private boat mode (hundreds of US dollars per trip)
price_2 : price for charter boat mode (hundreds of US dollars per trip)
price_3 : price for pier mode (hundreds of US dollars per trip)
rate_0 : catch rate for beach mode
rate_1 : catch rate for private boat mode
rate_2 : catch rate for charter boat mode
rate_3 : catch rate for pier mode
income : the individual’s monthly income (thousands of US dollars)

In this dataset the price and catch-rate variables (attributes) vary by both alternative and individual,
but income varies only by individual (individual characteristic). The price variable includes, apart from
any boat fees, the cost of fuel and opportunity costs of round-trip travel. The catch rates are defined
in a per-hour basis and depend on the respondents’ targeted species. We note that the dataset is
provided in ‘wide format’, where the variables that represent attributes are stored in different columns
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and there is a single row per observation. BayES requires the data for conditional models to be in
‘wide format’, but some software packages require the data in ‘long format’. In the ‘long format’ each
attribute variable is stored in a single column for all alternatives, but the data for each individual are
spread over multiple rows (four rows in an application with four alternatives) to accommodate the
different values of the attributes for each alternative.

We will assume that the utility that individual i derives from each fishing mode is a linear function
of the model’s attributes and the individual’s income:

mode∗mi = δ1pricemi + δ2ratemi + γ1m + γ2mincomei + ǫmi

for m = 0, 1, 2, 3. Notice that each mode of fishing (equation) has its own constant term, γ1m, and
its own coefficient associated with the income variable, γ2m. On the contrary, the two variables that
vary by alternative are associated with coefficients that are common to all modes. If we assume that
each ǫmi follows a type I extreme value distribution and it is independent of the ǫℓis that appear in
other equations, then we end up with a conditional Logit model with four alternatives. A multivariate-
Normal assumption on the M+1 ǫmis leads to a conditional Probit model. The following two tables
present results obtained using, respectively, BayES’ clogit() and cprobit() functions to estimate the
two models.

Mean Median Sd.dev. 5% 95%

mode
price -2.52981 -2.52485 0.166764 -2.81297 -2.2634
rate 0.366761 0.365327 0.109923 0.188559 0.550965

mode = 1
constant 0.548667 0.552333 0.219605 0.182512 0.906326
income 0.0859984 0.085725 0.0494161 0.00574861 0.168668

mode = 2
constant 1.7191 1.71642 0.22586 1.35122 2.09803
income -0.0366796 -0.0367008 0.0507107 -0.121232 0.0469404

mode = 3
constant 0.799792 0.803484 0.219524 0.435421 1.14951
income -0.132464 -0.132594 0.0503367 -0.213896 -0.0475816

Mean Median Sd.dev. 5% 95%

mode
price -1.58003 -1.55837 0.19682 -1.93473 -1.29969
rate 0.649115 0.636077 0.163492 0.404603 0.937011

mode = 1
constant -0.505295 -0.492719 0.338955 -1.07672 0.0328209
income 0.0941459 0.091574 0.0452355 0.0243894 0.171175

mode = 2
constant 0.635322 0.602065 0.342907 0.146063 1.23368
income -0.114876 -0.107703 0.0624231 -0.224988 -0.0296475

mode = 3
constant 0.61948 0.571198 0.31534 0.21298 1.18844
income -0.0938168 -0.0853114 0.0581785 -0.19812 -0.0187632

Both tables of results are split into four blocks. The upper block contains summary statistics of the
draws obtained from the posterior distributions of the parameters which are common to all alternatives
(δ1 and δ2) and which are associated with the attributes of each fishing mode: price and catch rate. The
following three blocks contain similar statistics for the parameters that are specific to each alternative:
the constant term and the individual’s income. Although there are four alternatives from which an
individual can choose, the first alternative is used as the base for identification purposes and the
reported statistics correspond to parameters βm≡γm−γ0 for m=1 (“boat”),m= 2 (“charter”) and
m= 3 (“pier”). BayES always uses as the base category the alternative whose attribute names end
with “ 0”, which in this example corresponds to the “beach” alternative.
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Because the choice probabilities are expressed as non-linear functions of the parameters, we should,
once again, refrain from interpreting the magnitudes of the parameters and we should, instead, calculate
marginal effects on the choice probabilities. As it is the case in multinomial models, the signs of the
marginal effects of the individual characteristics could be different from the signs of the corresponding
parameters. As will see bellow, however, at least for the conditional Logit model, the signs of the
parameters associated with the attributes of the alternatives are always the same as the effect that
a marginal increase in the value of an alternative’s attribute has on the probability of the individual
choosing this alternative. In the context of our application we can thus conclude that an increase in the
price of an alternative leads to a reduction in the probability of an individual choosing this alternative
(because the posterior mean of δ1 is negative) and that an increase in the catch rate of an alternative
increases the probability of choosing this alternative (because the posterior mean of δ2 is positive).

Obtaining the results presented above using BayES can be achieved using the code in the following
box. We note that due to the Metropolis-Hastings step used in the conditional Logit model, the
thinning parameter was to 5 to reduce autocorrelation in the retained draws.

✞ ☎
// import the data into a dataset called Data

Data = webimport("www.bayeconsoft.com/datasets/FishingMode.csv");

// generate a constant term

Data.constant = 1;

// run the conditional-Logit model

myCLogit = clogit( mode ∼ price rate | constant income, "thin"=5, "chains"=2 );

// run the conditional-Probit model

myCProbit = cprobit( mode ∼ price rate | constant income, "thin"=5, "chains"=2 );
✝ ✆

7.4.2 Marginal Effects in Conditional Models for Discrete Choice

As it is the case for any non-linear model, the magnitudes of the parameter estimates cannot
be easily interpreted in conditional models for discrete choice. Instead, we should calculate and
interpret the signs and magnitudes of the marginal effects of the independent variables on the
probability of each alternative being selected by the individual. If a conditional model contains
some variables that vary only by individual then the marginal effects on these variables are the
same as those for multinomial models (see Section 7.3.4). The marginal effects with respect
to the variables that vary by alternative are, again, calculated as marginal changes in each
probability of the form Prob(yi=m| {zℓi} ,xi) caused by a change in the variables in z. How-
ever, there are two types of vectors that store such variables: zmi that contains the differences
in attributes between alternative m and the base alternative, and M−1 additional zℓis that
contain the differences in attributes between alternative ℓ 6=m and the base alternative. For
example, if we are modelling the choice of commuting mode to work, an increase in commuting
time for alternativem is expected to lead to a decrease in the probability of alternativem being
chosen. However, an increase in commuting time for any other alternative, ℓ, is expected, a
priori, to lead to an increase in the probability of selecting alternative m. For the conditional
Logit model these two types of marginal effects can be obtained in closed form:

∂ Prob(yi=m| {zℓi} ,xi)
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(7.37)

and:

∂ Prob(yi=m| {zℓi} ,xi)
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where wmk is the kth attribute of alternative m and wjk is the kth attribute of alternative
j, j 6=m.11 As in the multinomial Logit model, the marginal effects with respect to the kth

attribute sum across alternatives to zero:

M
∑

m=0

∂ Prob(yi=m| {zℓi} ,xi)

∂wjik
= 0, k = 1, 2, . . . ,K (7.39)

This result is quite intuitive: if the kth attribute of alternative j changes by a small amount,
this change will have an impact on the choice probabilities for all M+1 alternatives. However,
the choice probabilities should sum to unity before and after the change in wjik and, thus,
the marginal effects should sum to zero. Another identity that can be easily verified using the
formulas for the marginal effects is:

M
∑

j=0

∂ Prob(yi=m| {zℓi} ,xi)

∂wjik
= 0, m = 0, 1, . . . ,M (7.40)

It is easier to interpret this result in the context of the example of selecting a commuting
mode to work. A small increase in commuting time for alternative m is expected to lead to a
reduction in the probability of a commuter selecting mode m. However, if the commuting time
of all M+1 modes increases by the same amount, then this does not affect the probability of
choosing alternative m, or any other alternative. This makes perfect sense if we consider the
random-utility framework that underlies the model: a change in the value of the kth variable
in every wℓi in (7.31) by ∆wk will lead to a change in all utility levels by δk∆wk. But because
the choice probabilities depend only on utility differences, not the absolute levels of utility,
these choice probabilities will remain unaffected.

The last two results are based on the fundamental properties of conditional models for
discrete choice and, as such, hold also for conditional Probit models. In conditional Probit
models however, there are no closed-form expressions for the marginal effects and the results are
much harder to prove mathematically. Even though no closed-form expressions are available
for conditional Probit models, the effects can again be approximated using the GHK algorithm.

We now turn to two additional results that are specific to the marginal effects of conditional
Logit models. First, because all pmis, (1−pmi)s and pjis are non-negative, (7.37) and (7.38)
suggest that there is a correspondence between the signs of the marginal effects of the attributes
of the alternatives and the signs of the respective coefficients: the effect of a change in wmi on
pmi has the same direction as the sign of the corresponding δk, but the effect of a change in a
variable in wji, j 6= m, on pmi has the opposite direction. This means that we can interpret
the signs of the parameters in δ, although not their magnitudes. Second, the marginal effects
of conditional Logit models are symmetric with respect to the attributes of the alternatives:

∂ Prob(yi=m| {zℓi} ,xi)

∂wjik
=

∂ Prob(yi=j| {zℓi} ,xi)

∂wmik
(7.41)

This symmetry is not as intuitive as the previous identities and comes as a result of the way the
choice probabilities are specified in conditional Logit models. Although neither of the last two
results holds exactly for conditional Probit models, both of them appear to be approximately
satisfied in empirical applications.

The following example is a continuation of Example 7.2, where we used conditional Logit
and Probit specifications to model the choice of fishing mode. In this part of the example we
calculate and interpret the marginal effects produced by the two models.

� Example 7.2 Recreational Fishing Mode (Continued)
In this example, we will continue working with the dataset used by Herriges & Kling (1999) to model the
choice of fishing mode. The following two tables present statistics from the the posterior distributions of

11Notice that we express marginal effects here in terms of the original attributes, wℓi, not in terms of the
differences in attributes relative to the base category, zℓi ≡ wℓi−w0i.
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the marginal effects under a conditional Logit and a conditional Probit model, respectively. Each table
contains four relatively long blocks, but we only present here the first two blocks, which correspond
to alternatives 0 (“beach”) and 1 (“boat”).

Mean Median Sd.dev. 5% 95%

dProb(y=0)/dx
price 0 -0.12415 -0.12359 0.0120506 -0.144926 -0.105301
price 1 0.0549252 0.0546284 0.00553064 0.0462726 0.0643764
price 2 0.0606322 0.0602833 0.00611838 0.0511386 0.0712863
price 3 0.00859255 0.00849544 0.00154957 0.006208 0.0113355
rate 0 0.0181096 0.0177575 0.00597811 0.00888643 0.0284348
rate 1 -0.00800764 -0.00785416 0.00263756 -0.0125446 -0.00393137
rate 2 -0.00883996 -0.00866363 0.00291664 -0.0138842 -0.00434996
rate 3 -0.00126197 -0.00121042 0.000487182 -0.00212885 -0.000563979

income -0.000496659 -0.00050641 0.00230648 -0.00425132 0.00336569

dProb(y=1)/dx
price 0 0.0549252 0.0546284 0.00553064 0.0462726 0.0643764
price 1 -0.615507 -0.614619 0.0426639 -0.687958 -0.546662
price 2 0.491633 0.490037 0.0432637 0.422656 0.566211
price 3 0.0689487 0.0687155 0.00656619 0.0585808 0.0800685
rate 0 -0.00800764 -0.00785416 0.00263756 -0.0125446 -0.00393137
rate 1 0.0892116 0.0888839 0.0267315 0.045927 0.13395
rate 2 -0.0711503 -0.0709699 0.0212949 -0.106687 -0.0366008
rate 3 -0.0100537 -0.00985093 0.00329948 -0.0158002 -0.00494428

income 0.0315915 0.0316969 0.00662684 0.020615 0.0424148

dProb(y=2)/dx
...

...
...

...
...

...

dProb(y=3)/dx
...

...
...

...
...

...

We start by interpreting the posterior means in the first block of parameters. The number associated
with price 0 suggests that if the price of fishing on the beach increases by one unit ($100), this will,
on average, lead to a reduction in the probability of an individual choosing this mode of fishing by
12.4% according to the conditional Logit model and by 16.1% according to the conditional Probit.
Similarly, a unit increase in the catch rate of fishing on the beach is expected to increase the probability
of choosing this alternative by 1.8% and 6.6%, respectively. The number associated with price 1 in
the first block of the tables suggests that if the price of fishing on a private boat increases by one
unit, this will lead to an average increase in the probability of an individual choosing fishing on the
beach by 5.5% according to the conditional Logit model and by 7.8% according to the conditional
Probit. The corresponding posterior mean of the marginal effect associated with rate 1 implies that
a unit increase in the catch rate of fishing by boat leads to an average reduction in the probability
of choosing to fish on the beach by 0.8% and 3.2%, respectively. Finally, an increase in the monthly
income of an individual by $1000 is expected to have a miniscule effect on the probability of fishing
on the beach (reduction by 0.05% and 0.08% according to the conditional Logit and Probit models,
respectively).

The interpretation of the remaining blocks of the marginal-effects tables follows along the same
lines. The only difference is that the marginal effects in the second block, for example, are on the
probability of an individual choosing the second alternative (fishing by private boat). In the second
block we see that an increase in the alternative’s own price leads to a reduction in the probability of
choosing that alternative, while an increase in the catch rate of the alternative leads to an increase
of this probability. Finally, an increase in the individual’s income by $1000 leads, on average, to an
increase in the probability of fishing on a private boat by 3.2% and 2.7%, respectively from the two
models.
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Mean Median Sd.dev. 5% 95%

dProb(y=0)/dx
price 0 -0.161285 -0.159096 0.0249924 -0.205604 -0.124101
price 1 0.0782552 0.0779895 0.0186328 0.0478232 0.10902
price 2 0.0616513 0.0615342 0.0162211 0.0350641 0.0884303
price 3 0.0213781 0.0186491 0.0165523 -0.000315232 0.0520839
rate 0 0.0663813 0.0646423 0.0183071 0.0395106 0.0990871
rate 1 -0.0322954 -0.0310713 0.0110687 -0.0523178 -0.0163819
rate 2 -0.025261 -0.0245107 0.00859937 -0.0406282 -0.0126247
rate 3 -0.00882493 -0.00739523 0.00731041 -0.0224607 0.000134144

income 0.0007846 0.000720556 0.00314279 -0.00425339 0.00604273

dProb(y=1)/dx
price 0 0.0782379 0.0782139 0.0192069 0.0467666 0.109578
price 1 -0.265342 -0.265326 0.0279359 -0.310818 -0.219266
price 2 0.104429 0.102792 0.0251637 0.0661748 0.148261
price 3 0.0826751 0.0831587 0.0216344 0.0457653 0.117666
rate 0 -0.0322855 -0.0311056 0.0112234 -0.0524222 -0.016052
rate 1 0.108625 0.107493 0.024723 0.0699003 0.15109
rate 2 -0.0422906 -0.0414753 0.0117643 -0.0630251 -0.0243376
rate 3 -0.0340493 -0.0327333 0.0122079 -0.0560727 -0.0164999

income 0.0272776 0.0272413 0.00646498 0.0165572 0.0378988

dProb(y=2)/dx
...

...
...

...
...

...

dProb(y=3)/dx
...

...
...

...
...

...

The results presented above can be obtained in BayES using the code in the following box.
✞ ☎
// import the data into a dataset called Data and generate a constat term

Data = webimport("www.bayeconsoft.com/datasets/FishingMode.csv");

Data.constant = 1;

// run the conditional Logit and Probit models

myCLogit = clogit( mode ∼ price rate | constant income, "thin"=5, "chains"=2 );

myCProbit = cprobit( mode ∼ price rate | constant income, "thin"=5, "chains"=2 );

// calculate marginal effects for the two models

mfx( "model"=myCLogit );

mfx( "model"=myCProbit );
✝ ✆

7.5 Synopsis

This chapter introduced and covered in detail models designed to work with response variables
that can be in one out of a finite number of states. These models are generalizations of the
binary Probit and Logit models, examined in Chapter 6, in which the response variable can be
in one out of two states. Such models are used in economics and most social sciences, in general,
in the context of individual choice between different alternatives. Thus, they are also known
as discrete-choice models and they can be justified using the random-utility framework. The
independent variables that enter the specification of discrete-choice models can be the relevant
characteristics of the individual making the choice or the attributes of the alternatives available
to the decision maker. The type of independent variables is the feature that distinguishes
the two main categories of models: multinomial models contain variables that vary only by
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individual, while conditional models contain attributes as independent variables, although they
can also accommodate individual characteristics.

As with models for binary response, the distributional assumptions imposed on the error
terms give rise to Logit and Probit models. The choice probabilities in multinomial and
conditional Logit models can be expressed in closed form and this is something that simplifies
the analysis considerably. However, Logit models also assume independence of the odds ratio
between choosing two alternatives from whether other alternatives are available to the decision
maker or not. This assumption, known as Independence of Irrelevant Alternatives (IIA), is
unrealistic in most applications. The multinomial and conditional Probit models relax this
assumption by allowing the error terms to be correlated. However, this flexibility comes at the
cost of having to employ very computationally intensive procedures for parameter estimation
and calculation of marginal effects. This is because the choice probabilities in the Probit
models cannot be expressed in closed form and they involve integrals, the dimensions of which
increase with the number of alternatives. This is not a problem per se in a Bayesian context.
However, integration by simulation is challenging in these models because it involves sampling
from multidimensional truncated-Normal densities.
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