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2 CHAPTER 1. GETTING STARTED

1.1 Overview

BayES is a software designed for performing Bayesian inference in some popular econometric
models using Markov Chain Monte Carlo (MCMC) techniques. Bayesian inference traditionally
requires skills and a lot of effort from the part of the researcher, both in terms of mathematical
derivations and computer programming. BayES provides canned procedures for Bayesian infer-
ence for a set of models, thus avoiding the time-consuming process of deriving complete/full
conditionals and coding the samplers.

BayES is primarily menu driven, providing an intuitive user interface that enables first-time
users to run a model in a matter of minutes. However, it also features a rich scripting language
that allows fast and efficient communication with the program, while facilitating reproducibility
of the analysis. Users familiar with other popular matrix languages will find the transition to
BayES’ scripting language a breeze.

Modern Bayesian inference is based on very computationally intensive techniques. However,
MCMC methods are “embarrassingly parallel”. BayES has built-in multi-threading support,
thus making estimation much faster: when estimating a model, BayES will start as many
threads as the number of chains requested by the user. No additional coding or knowledge of
multi-threading processing is required.1

BayES is not simply another econometrics software package. Its emphasis is in models
that are hard or impossible to estimate using classical (frequentist) inference and, thus, it
is not a substitute for mainstream and well-established econometric software packages. On
the other side of the spectrum, BayES is not competing with general or statistical scripting
languages either. BayES is designed for the user who wants to perform Bayesian inference in a
computationally involved problem, but who does not want go through the process of learning
a new programming language for doing so.

The current version of BayES (version 2.5) supports the following models:

� linear models, including models for cross-sectional and panel data (random effects, ran-
dom coefficients)

� stochastic frontier models for cross-sectional and panel data, using an array of possible
specifications

� discrete-choice models, including models for cross-sectional and panel data and for binary
or multi-response dependent variables

� simple models for ordinal data (ordered Probit and Logit)

� simple models for count data (Poisson and negative Binomial)

� type-I and type-II Tobit models

� linear seemingly unrelated regressions

� vector autoregressive models for time-series data

Version 2.5 of BayES runs on both 32-bit and 64-bit Microsoft® Windows® (Windows 7, 8,
and 10) and Linux systems2 and on 64-bit macOS systems. Appendix A provides installation
instructions under these systems.

1.2 Running BayES

Once successfully installed, BayES can be used in two modes: (i) interactive mode using its GUI
facilities, and (ii) batch mode by calling BayES from the command line and providing a script
file for execution. Instructions on using BayES in each of these modes are presented separately
in the following two sections. See also the video tutorials on BayES’ website.

1Future development plans include taking advantage of Graphical Processing Units (GPUs), which are
present in most personal computers. Such a feature could increase speed by orders of magnitude.

2BayES has been tested on CentOS 7, Fedora 28, Debian 9.4, Ubuntu 18.04, openSUSE 15, and Linux Mint
19. It may be able to run on other distributions as well, but use at your own risk.

http://bayeconsoft.com/tutorials.html
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1.2.1 Running BayES in interactive mode

BayES can be initiated in interactive mode by (i) clicking on the BayES icon on the system’s
‘start’ menu or on the Launchpad (under macOS), (ii) double-clicking on the BayES icon on the
system’s desktop (iii) typing BayES and hitting the return key on the system’s console window,
or (iv) double-clicking on the BayES link file in the installation directory, as it was provided
during installation. Note that the first three options may be unavailable, depending on the
options selected during installation. However, the fourth option will always be available.

When BayES starts in interactive mode the main window will appear. This window contains:

� the BayES console, where output will be printed once instructions are submitted by the
user

� the datasets pane, which will contain a list of datasets held in memory, once any datasets
are imported or created

� the models pane, which will contain a list of models held in memory, once any models
are estimated and their results stored

� the matrices pane, which will contain a list of matrices held in memory, once any matrices
are defined by the user

� the main menu on the upper-left corner of the window, which provides the main way of
interacting with BayES when using the GUI (importing data, estimating models, plotting,
etc.)

� the main window toolbar, located right below the main menu, which provides quick access
to some frequently used functions, such as importing data, saving and loading workspaces
or interrupting the execution of a procedure

� the status bar at the bottom of the main window, which displays the current work-
ing directory as well as a progress bar that will display information on the progress of
computationally intensive procedures

An additional window, the BayES script editor, which does not appear automatically when
BayES starts, can be shown from the main menu: View�Script Editor. This window can be
used to type code in BayES’ scripting language and submit instructions in bulk.

Once the user submits instructions, either via the GUI or the script editor window, these
instructions are interpreted and the appropriate actions executed. During this time most GUI
functions will not be accessible. Upon completion of execution control returns to the user, who
can continue with submitting further instructions.

The first time that BayES starts in interactive mode the working directory is set to the
installation directory, as provided during installation. This directory will be used as the starting
point for importing data and saving output (datasets, matrices, plots, etc.) and looking for
user-defined functions. Depending on the options chosen by the user (from Help�Preferences

under Microsoft®Windows® and Linux systems and from Preferences under macOS systems
in the main menu), this directory may change when BayES is subsequently invoked in interactive
mode.

1.2.2 Running BayES from the command shell

If BayES is made globally available from the command line3 then BayES can also be run in
batch mode. This is achieved by submitting a command of the following form on the system’s
command console (cmd under Microsoft® Windows® or bash under Linux and macOS):

BayES <input file> [<output file>]

where:

3This can be achieved by checking the relevant checkbox during installation.
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� <input file> is a BayES script file that contains statements written in the BayES language
(see Chapter 2 for more details). <input file> should be provided as the name of the
script file (including its extension), prepended by the path to the file, either in absolute
terms or relative to the command console’s current directory.

� <output file> is an optional argument that defines a file to which any output from the
BayES console is redirected. As before, <output file> should be provided as the name of
the file (including its extension), prepended by the path to the file, either in absolute
terms or relative to the command console’s current directory. If such a file does not exist
then BayES will create it. If the file exists its contents will be replaced.

Once a command of this form is submitted to the system’s command console, BayES will
fire-up without displaying its GUI and it will start executing the commands contained in
<input file>. If an <output file> is provided, output from the BayES console is directed to
this file; otherwise output is printed on the system’s console window. Note that BayES does
not distinguish between normal and error output and everything is printed on the normal
channel. Upon completion of the execution of the statements contained in <input file> or
upon encountering an error, BayES terminates and control is passed back to the system’s
command console.

1.3 Quick start for the impatient: video tutorials

Video tutorials that can be found on the BayES website illustrate how to use BayES, either
in interactive or batch mode. These tutorials will have a first-time user running models in a
matter of minutes and they cover basic, as well as more advanced topics:

1. An Overview of the BayES� Desktop

2. Importing, Summarizing and Plotting Data

3. Running Models from the GUI

4. Working with Code: The BayES� Script Editor

5. Working with BayES� from the Command Shell

6. Writing and Executing BayES� Functions

1.4 How to use this document

The following chapter provides a quick overview of the BayES language and it is recommended
that all users go through it. Chapter 3 documents the way external programs can be accessed
from BayES and is recommended to users who plan to use these interfaces. From that point
onwards the chapters cover specific models and need not be studied in the order presented
in this document: every chapter and, to a large extend, every section within a chapter is self
contained. Documentation of every model starts with a mathematical representation, continues
with the analysis of syntax of the relevant command, describes the results presented and stored
from the model and concludes with code examples. All these models can also be accessed from
the GUI, but this is not documented here. Appendix B documents all the functions available in
BayES, except the model estimation functions, which are documented in the relevant chapters.

This document is not a substitute for a textbook on Bayesian econometrics. It is assumed
that the user is familiar with the basics of Bayesian inference at the level presented, for example,
in Greenberg (2013), Koop (2003), or Lancaster (2004). “Bayesian Econometrics using BayES�”
is an early draft of a book on Bayesian econometrics, which is associated with BayES and uses
examples that employ BayES for estimation. This is made available under a Creative Commons
license and can be used as an introduction to Bayesian econometrics, as well as a “soft” intro-
duction to the software itself.

http://bayeconsoft.com/index.html
http://bayeconsoft.com/tutorials.html#desktopAnchor
http://bayeconsoft.com/tutorials.html#dataAnchor
http://bayeconsoft.com/tutorials.html#modelsAnchor
http://bayeconsoft.com/tutorials.html#codeAnchor
http://bayeconsoft.com/tutorials.html#batchAnchor
http://bayeconsoft.com/tutorials.html#functionsAnchor
http://www.bayeconsoft.com/pdf/BayesianEconometricsUsingBayES.pdf
http://creativecommons.org/licenses/by/4.0/legalcode
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2.1 Introduction

Although full functionality is available via the Graphical User Interface (GUI), oftentimes
it may become cumbersome and time consuming to submit commands via this route. For
example, it happens very often in practice that one needs to add one extra independent variable
to a model previously estimated, leaving all other model parameters unchanged. In such a case,
including the additional variable in the model can be done by a few keystrokes rather than a
series of mouse clicks. Furthermore, creating and deleting variables or otherwise transforming
data may involve repetitive tasks that can be accomplished much faster through writing code,
rather than via the menu.

To address these issues, BayES features a programming language that allows making adjust-
ments to previously submitted commands and data processing much more efficient. That said,
someone fluent in the BayES language can dispense of the graphical environment altogether
and work only using code.

The BayES language is very intuitive and users of software packages that work with matrices
or arrays will find the transition to programming in BayES’ language very easy. Furthermore,
to facilitate use of the language, every time a command is submitted through the GUI, the first
thing that is printed on the BayES console is the code that accomplishes the tasks requested
by the user.1

2.1.1 Writing and submitting code

The easiest way to write and submit code for execution to BayES is by invoking the script
editor from the menu: View�Script Editor.2 The window that pops up is a simple text
editor designed to highlight code that is written in the BayES language. There are three
equivalent ways of submitting code for execution via the graphical user interface:

1. via the script editor’s menu: Run�Run

2. by clicking the Run button on the script editor’s toolbar (below the window’s menu)

3. by hitting the Ctrl/Cmd and R keys simultaneously (Ctrl+R)

Any of these procedures will submit for interpretation and execution all the contents of the
active script tab in the editor window. Alternatively, if you wish to submit only part of the
code in a script file, highlight the part of the code you want to execute before submitting it,
using any of the three ways mentioned above. Script files can be saved on the computer’s hard
disk, typically using a .bsf (BayES script file) extension.

BayES can also be invoked from the command line without starting up the graphical en-
vironment.3 In this context, BayES can execute the commands contained in a script file and
either print output on the system console or redirect output to another text file.

2.1.2 Using the sample files that come with BayES

BayES ships with a number of sample files. During installation these files are extracted in a
folder named Samples under the BayES installation directory. These files contain sample code
that is typically much more complete than the examples found in this guide. They contain
many comments and are self-explanatory. To run the sample code open them from the script
editor window and click on the Run button or hit Ctrl+R.

Note that many of these files contain statements like setwd("$BayESHOME");. This statement
sets the working directory to the BayES installation directory, so that it can call functions and
load data from files that are located in the folders created during installation.

1In fact, the only role for the GUI in BayES is to prepare code based on user input. Once a command is
submitted via the GUI (typically by clicking on an “OK” or “RUN” button), the associated code is printed on
the console and then interpreted, performing the requested task.

2See also the video tutorial “Working with Code: The BayES� Script Editor”.
3See section 1.2.2 and the video tutorial “Working with BayES� from the Command Shell”.

http://bayeconsoft.com/tutorials.html#codeAnchor
http://bayeconsoft.com/tutorials.html#batchAnchor
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2.2 Arithmetic operations

In its simplest form BayES can be used as a desk calculator, which has the ability of storing
values to user-defined variables. In this context, BayES supports:

1. the basic arithmetic operations (addition, subtraction, multiplication, division)

2. unary minus

3. exponentiation

4. functions for taking logarithms, square roots, etc.

5. parentheses to group expressions

An example of using BayES as a calculator is given in Example 2.1. This example also
illustrates that any line starting with a double slash is treated by BayES as a comment. Multi-
line comments are enclosed in matching “/*” and “*/”, as shown in Example 2.4.

� Example 2.1✞
H Input

// Define an item with id value A and

// print it on screen

A = 3;

print(A);

// Define an item with id value B and

// print it on screen

B = 2*A - 4;

print(B);

// Define an item with id value C and

// print it on screen

C = 2*(A+3) ^2 - 5/2*log (B);

print(C);
✝

☎
H Output

A =

3

B =

2

C =

70.2671

✆

The term “id value” is used in this guide to denote the name of an item held in memory. In
the example above three values were defined with names A, B and C. These names (id values)
are then used to refer to the numerical values stored in the respective items.

2.3 Matrices and matrix calculations

2.3.1 Defining and using matrices

Matrices can be defined using square brackets. Example 2.2 shows how this is accomplished.
It also shows how to define matrices using other matrices as blocks and how to perform basic
arithmetic operations on matrices.

2.3.2 Indexing matrices and the range operator

The entries of matrices can be accessed using parentheses after the matrix id value. For
example, if A is a matrix currently in memory, the statement:

b = A(3,4);

will take the element of A located in the 3rd row, 4th column and store it in an item with id
value b.

When you want to access consecutive entries in a matrix you have to use the range op-
erator, “:”. When the range operator is preceded and followed by positive integers, i and j,
respectively, with i < j, it is taken to mean “from i to j”. For example, the statement:

C = A(2:3 ,4) ;
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� Example 2.2✞
H Input

// A is a 2x3 matrix

A = [1, 2, 3;

4, 5, 6];

print(A);

// White space is irrelevant. All

// that matters is that columns are

// separated by "," and rows by ";".

B = [1,2,3; 4,5,6];

print(B);

// B is equal to A

print(A-B);

// Arithmetic operations on matrices

C = 3*A - 2*(B+A);

print(C);

// Take the transpose of C

D = C′;

print(D);

// Create E by defining its blocks :

// 1 -> a 3x1 vector

// 2 -> a 3x2 matrix

E = [ [1;2;3] , 2*D ];

print(E);

✝

☎
H Output

A =

1 2 3

4 5 6

B =

1 2 3

4 5 6

A-B =

0 0 0

0 0 0

C =

-1 -2 -3

-4 -5 -6

D =

-1 -4

-2 -5

-3 -6

E =

1 -2 -8

2 -4 -10

3 -6 -12
✆

will take the entries of A located in rows 2 to 3, column 4 and store them in a 2×1 matrix C.
When the range operator is not preceded and not followed by integers, it is taken to mean

“all items in the respective dimension”. For example, the statement:

D = A(:,4);

will take the entire 4th column of A and store it in a matrix (column vector) D.
Finally, when a single range operator is used to index the elements of a vector or matrix,

A, then all entries of A are requested. That is, all three statements:

D = A;

D = A(:,:);

D = A(:);

are equivalent when A is a matrix, and they create a copy of A into a matrix with id value D.
Example 2.3 puts all these together, while Example 2.4 shows how indexing is performed

and how the range operator can be used in the left-hand side of assignment statements to alter
a block of a matrix already in memory. It also shows how to copy the entries of a matrix A

into another matrix B, respecting the dimensions of the left-hand-side matrix.

2.3.3 Element-wise operators

Matrix addition and subtraction work, as expected, in an element-wise fashion: if A and
B are two M ×N matrices and C = A + B, then C is defined such that cij = aij + bij ,
∀i = 1, . . .M, j = 1, . . .N . Matrix-matrix multiplication, again as expected, works in a
non-element-wise fashion: if A is an M×K matrix, B is a K×N matrix and C = A ·B, then
C is an M×N matrix such that:

cij =
K
∑

k=1

aik · bkj ∀i = 1, . . .M, j = 1, . . .N
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� Example 2.3
✞
H Input

// Define A as a 4x4 matrix

A = [ 1, 2, 3, 4;

-1,-2,-3,-4;

8, 7, 6, 5;

-4,-5,-6,-8

];

// b is the entry of A in row 3,

// column 4

b = A(3,4);

print(b);

// Print the elements in rows 2 to 3,

// column 4

print(A(2:3 ,4) );

// Print the 4th column of A

print(A(:,4));

// Print the 1st row of A

print(A(1,:));
✝

☎
H Output

b =

5

A(2:3 ,4) =

-4

5

A(:,4) =

4

-4

5

-8

A(1,:) =

1 2 3 4

✆

� Example 2.4
✞
H Input

/* Define A as a 3x2 matrix of random

draws from an exponential distribution

with rate 2.5 and print it */

A = exprnd (2.5 ,3 ,2) ;

print(A);

// Make the entry in row 2, column 1

// of A equal to one and print A

A(2,1) = 1;

print(A);

// Make the first row of A equal to a

// vector of zeros

A(1,:) = zeros(1, cols(A));

print(A);

// Define B as a 3x2 matrix of zeros

// and assign the entries of A to it

B = zeros (2,3);

B(:) = A;

print(A);

print(B);

/* A and B have different dimensions

but the same number of entries. The

entries of A are stored in B in a

column -major fashion */
✝

☎
H Output

A =

0.20604 1.10341

0.170939 0.142362

0.535967 0.360443

A =

0.20604 1.10341

1 0.142362

0.535967 0.360443

A =

0 0

1 0.142362

0.535967 0.360443

A =

0 0

1 0.142362

0.535967 0.360443

B =

0 0.535967 0.142362

1 0 0.360443
✆
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However, very frequently in practice, one needs to do element-wise multiplication, division
or exponentiation of matrices. As it is common in other matrix languages, BayES defines the
following element-wise operators:

� “.*” for element-wise multiplication

� “./” for element-wise division

� “.^” for element-wise exponentiation

Example 2.5 shows how these operators can be used.

� Example 2.5
✞
H Input

// Define matrices

A = [ 1, 2;

3, 4];

B = [ 5, 4;

2, 1];

// Element -wise multiplication

print(A.*B);

// Element -wise division

print(A./B);

// Element -wise exponentiation

print(A.^B);

✝

☎
H Output

A.*B =

5 8

6 4

A./B =

0.2 0.5

1.5 4

A.^B =

1 16

9 4

✆

2.3.4 Operator precedence

Arithmetic operations contained in an expression are evaluated in the following order:

1. expressions inside parentheses – (...)

2. transposition (′), scalar and element-wise exponentiation (^, .^)

3. unary minus (-)

4. matrix and element-wise multiplication (*, .*), scalar and element-wise division (/, ./)

5. addition (+) and subtraction (-)

Operators with equal precedence are evaluated from left to right.
As an example, consider the expression:

B*A′^2 - 0.5^-2*(A+B)

where A and B are 2×2 matrices:

A =

[

1 2
3 4

]

and B =

[

2 3
1 2

]

The expression above is evaluated in the following way:

B * A ′
ˆ 2 - 0.5 ˆ - 2 * ( A + B )

1 2
3 4

′

1 3
2 4 2ˆ

7 15
10 22

2 3
1 2

∗

44 96
27 59 −

2−

−2ˆ0.5

4

( )

+

3 5
4 6

∗

12 20
16 24

32 76
11 35

1 2
3 4

2 3
1 2



2.4. DATASETS AND DATA TRANSFORMATIONS 11

2.3.5 Functions operating on matrices

BayES provides an array of functions that take matrices as arguments and return matrices.
These include:

� special matrix functions like inv(), trace(), diag(), etc.

� functions that provide generalizations of scalar functions like log(), exp(), sqrt(), etc. to
matrices and work in an element-wise fashion

� summing, rounding and descriptive-statistics functions like sum(), floor(), mean(), etc.

� decompositions of matrices like chol() and eig()

Detailed descriptions of these functions are given in Appendix B.

2.4 Datasets and data transformations

The fundamental data type in BayES is the matrix and BayES’ language is designed to work
primarily with matrices. However, to facilitate statistical analysis and reporting of results
BayES uses an additional type that can store data: the dataset. For practical purposes, a
dataset in BayES is a special type of a matrix with each one of its columns storing data on a
particular variable and having an associated name; the variable’s name.

Typically datasets are defined by importing data into BayES using a statement like:

myData = import("c:/ myFiles /mydata /dataset1 .csv ", ",");

This statement reads the data from the csv file dataset1.csv, located at "c:/myFiles/mydata",
into a dataset with id value myData and using comma as the field separator. Each column of
dataset1.csv must contain the data on a variable, with the first row specifying the variable
names.

Datasets can also be constructed in BayES by turning a matrix into a dataset. For example,
if X is a matrix in the current workspace, then the statement:

myData = dataset (X);

will create a dataset with id value myData by treating each column of X as a variable. Because
variables in datasets must have an associated name, this statement will name the variables in
myData as _V1, _V2, etc. Alternatively, variable names can be provided as an optional argument
to the dataset() function or the variables in myData can be renamed using the rename() function
after the dataset has been constructed (see section B.13 for details).

Once a dataset item is constructed then the functions operating on datasets can be used.
These functions include printing summary statistics, creating, deleting and renaming variables,
sorting data, etc. and are documented in B.13. Sample "2-Working with datasets.bsf", located
at "$BayESHOME/Samples/1-GettingStarted", demonstrates many of BayES’ capabilities in working
with datasets.

Because datasets in BayES are simply special matrices, all operations and functions defined
for matrices work also on datasets. Importantly, the indexing methods described in section
2.3.2 can be used to extract or alter the values stored in a dataset. For example, if myData is a
dataset with three variables named var1, var2 and var3, then the statement:

X = myData (:,3) ;

will construct a matrix X that stores the values of var3 (third column of the dataset). Variables
in a dataset can also be referred to by their name by using the ‘.’ operator. For example, an
equivalent way of constructing X from the values of var3 would be:

X = myData .var3;

The ‘.’ operator can also be used to define new variables for a dataset. Continuing working
with the myData dataset, the following statement creates a new variable named logvar2 with
values equal to the natural logartihm of var2:
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myData .logvar2 = log (myData .var2);

Indexing and range operations can be used in the left-hand side of assignment statements
involving datasets as well. For example, the statement:

myData (1:3 ,1) = zeros (3,1);

makes the first three rows of the first variable in myData equal to zero. As long as var1 is the
first variable in myData, this statement is equivalent to:

myData .var1 (1:3) = zeros (3,1);

where, instead of using a column index in the left-hand side of the statement, the column of
the dataset is referenced by the variable name.

When mathematical operations or operations that involve indexing are performed repeat-
edly on a dataset (for example within a loop), it is usually faster to turn the dataset into
a matrix, perform the operations on the matrix and then turn the final matrix back into a
dataset. For example, the following statements:4

X = myData ;

for (i=1: rows(myData ))

X(i ,1) = i;

end

myData = dataset (X, {var1 ,var2 ,var3 });

store the data in myData into a matrix X, alter the values in the first column of X using a loop
and replace the original dataset with a new one, constructed from the values in X. The same
task could be accomplished by:

for (i=1: rows(myData ))

myData (i,1) = i;

end

but the second set of statements could be slower, especially if myData contains many observations.

2.5 Models

The model data type is used to store the results obtained from estimating the parameters of
any model available in BayES. For example the statement:

myModel = lm( y ∼ x1 x2 x3 );

runs a simple linear model, where y is the dependent variable and x1, x2 and x3 the independent
variables, and prints a summary of the results on the BayES console. It also stores the results
into a model item with id value myModel and these results become available for further processing
(model comparison, testing restrictions on parameters, plotting or exporting the draws from
the posterior, etc.). If the statement above is submitted without providing a left-hand-side
value, i.e. if it were submitted simply as:

lm( y ∼ x1 x2 x3 );

then BayES would still run the model and print the results, but these results would not be
available for further processing.

If myModel is a model in memory in the current workspace then the statement:

print(myModel );

prints a summary of the results from the model on the BayES console. The statement:

who(myModel );

prints a list of the elements stored in myModel. These elements always include the values of
the Gibbs-sampler parameters (number of chains, number of burn-in draws per chain, total
number of retained draws from the posterior, value of the thinning parameter and the seed

4See section 2.9 for a general discussion on program flow and subsection 2.9.3 for a description of for loops.
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for the random-number generator), the value of the log-marginal likelihood using the Laplace
approximation (Lewis & Raftery, 1997) and the draws from the posterior distribution for each
parameter. All these elements can be accessed using the ‘.’ operator. For example, the
statement:

print(myModel .logML);

will print the value of the log-marginal likelihood of myModel on the BayES console, while the
statement:

samples_beta1 = myModel .x1;

will create a vector with id value samples_beta1 that contains the values of the draws for the
parameter associated with variable x1.

Many different types of models can be estimated in BayES by using different model-creating
functions. For example, the lm() function estimates a linear model, the sf_re() function esti-
mates a stochastic-frontier model with random effects and the probit() function estimates a
Probit model. All model-creating functions take the model specification as their (required)
first argument. The model specification is typically given in the form:

<dependent variable> ∼ <independent variables>

and an example of was this given at the beginning of this section. The model-creating functions
also take a list of optional arguments, some of which are common to all functions and some
being available only to specific models. These optional arguments always come in option-value
pairs (eg. "chains"=3, "draws"=10000, etc.) and the order in which they are provided to the
function does not play a role. That is, the following two statements are equivalent:

myModel = probit ( y ∼ x1 x2 x3, "chains "=3, "draws "=10000 );

myModel = probit ( y ∼ x1 x2 x3, "draws"=10000 , "chains "=3 );

The meaning of both common and model-specific optional arguments and their default
values is documented analytically in the following chapters, under each specific model. It is
worth noting here, however, that the common optional arguments for all functions are:

� the values of the Gibbs sampler parameters (number of chains, number of burn-in and
retained draws per chain, and the values of the thinning parameter and the random-
number generator seed)

� a logical argument (its value could be either true or false) that indicates whether the Chib
(1995) or Chib & Jeliazkov (2001) approximation to the log-marginal likelihood should
be calculated; depending on the type of model, these calculations may be as demanding
as the original estimation of the model

Because a model item stores the draws from the posterior, it may use much of the machine’s
memory. It is, therefore, advisable to delete models from memory (using the clear() function)
if the results from the model are no longer needed.

Sample "3-First models.bsf", located at "$BayESHOME/Samples/1-GettingStarted" provides a first
exposure to estimating models in BayES. The samples located at "$BayESHOME/Samples/2-Models"

illustrate how all types of supported models can be estimated and their results analyzed.

2.6 Structures

A structure in BayES is a data type used to group together different data types into a single
element. For example, it may be convenient to bundle together a set of a matrices and strings,
assign an id value to the bundle and use this id value to refer to it in subsequent statements.
As an example, suppose that A is a matrix, myModel a model and myData a dataset, all of them
being in memory in the current workspace. The statement:

S = { e1 = A, m = myModel , d = myData };
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defines a structure S with three elements, the id values of which are e1, m and d. The elements
of S can be accessed using the ‘.’ operator. For example, the statement:

print(S.m);

will print on the BayES console the results from the model that has an id value m within structure
S. The list of elements contained in a structure is printed on the BayES console using the who()

function:

who(S);

The elements of S are copies of the original elements and have their own life: altering
the entries of S.e1 in the example above will not affect matrix A in the current workspace.
Structures can have other structures as elements and can be infinitely nested.

Structures can be used within a script to make code more succinct. Simple examples
of using structures can be found in sample "5-Working with structures.bsf", which is located
at "$BayESHOME/Samples/1-GettingStarted". Although optional in most cases, structures must be
used to communicate with programs external to BayES. Initial values are passed to JAGS
and OpenBUGS (see Sections 3.2 and 3.3) in the form of structures and the samples located
at "$BayESHOME/Samples/3-JAGS-OpenBUGS" demonstrate their use in this context. Other interface
functions provided by BayES (see Sections 3.5 to 3.8) return structures after completion and
their use is demonstrated in the samples located at "$BayESHOME/Samples/5-Interfaces".

2.7 Strings

Strings of characters constitute another data type in BayES. Strings are defined as words or
phrases enclosed in double quote marks and they can be assigned id values, which can be
subsequently used to refer to them. These can be concatenated or substrings extracted from
them. Strings are used primarily for printing information on the BayES console or when working
with directory statements. Example 2.6 demonstrates many of BayES’ capabilities in working
with strings. The full list of functions that operate on strings is given in section B.15.

� Example 2.6
✞
H Input

// Define two strings , s1 and s2

s1 = "Hello ";

s2 = "World!";

// Concatenate s1 and s2 and print the

// result on the console

s = strcat (s1,s2);

print(s);

// Print characters 1 to 5 from s

print(substr (s ,1:5));

// Compare two strings

r1 = "BayES strings are ";

i f ( strcmp (s2 ,"WORLD !") )

r2 = "not case sensitive ";

else

r2 = "case sensitive ";

end

print(strcat (r1 ,r2)) ;
✝

☎
H Output

Hello World!

Hello

BayES strings are case sensitive

✆

2.8 Data types and assignments

The previous five sections describe the five data types used by BayES:
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1. matrices

2. datasets

3. models

4. structures

5. strings

When using assignment statements, BayES infers the type of the item defined from the
right-hand side expression. For example, the statement:

s = "Hello from BayES !";

defines a string with id value s and assigns the value "Hello from BayES!" to it. The user does not
have to declare s as a string before assigning a value to it: BayES infers that s is a string because
the right-hand side expression, "Hello from BayES!", is a string. All functions that operate on
strings can be used on s.

Suppose that a subsequent statement in the same script is:

s = [3;2];

This statement redefines s as a 2×1 vector and all functions that operate on matrices can
be used with s. Furthermore, BayES deletes the value that s had when it was a string from
memory without issuing any error or warning. This means that the same id value can be used
in a script to represent different data types at different points. At every point, however, an
id value can be associated with a single data type and previous definitions are cleared from
memory.

2.9 Program flow

Until now this document covered code where the program control flows sequentially through
the statements in a script file: statements are interpreted and executed one-by-one in the order
they are defined in the script and the program ends when the last statement finishes executing.
Oftentimes in practice it is necessary to execute a statement repeatedly or if a condition is
satisfied. In these cases program control needs to jump from one point to another and execute
statements in a non-linear fashion.

BayES provides three ways of controlling the program flow:

1. if-else blocks where a block of statements are executed if a condition is true

2. for and while loops where a block of statements are executed repeatedly for a given
number of times or while a condition is true

3. user-defined functions

User-defined functions are covered in detail in section 2.10. The rest of this section covers
conditional execution and loops, after first defining boolean operators.

2.9.1 Boolean expressions and operators

A boolean expression is a logical statement that could be either true or false. For example:

� 1<3 is true

� 1>=3 is false

� x==3 is true or false, depending on whether x was defined to be equal to 3 or not5

Single boolean expressions, like the ones mentioned above, can be combined to form larger
expressions using boolean operators. Boolean operators are nothing more than symbols that
are used to convey the meaning of truth functionals in formal logic. Suppose that we have
two boolean expressions A and B. Table 2.1 shows how these two expressions can be combined
using boolean operators and the truth values of the resulting composite expression, depending
on the truth values of the two original expressions.

5Notice that when testing for equality between two values, a double equality, ‘==’, is used. This is because
the single equality, ‘=’, is reserved for assignments and a statement like x=3 would assign the value 3 to x,
instead of testing whether x is equal to 3.
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Truth value of Truth value of Logical AND Logical OR Logical NOT
A B A & B A | B ∼A

TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE TRUE

Table 2.1: Logical operators and their syntax in BayES

Logical operators in BayES are evaluated from left to right, but parentheses can be used to
group composite boolean expressions and alter the order of evaluation. For example if A is true
and B false:

� ∼ A & B evaluates to false

� ∼ (A & B) evaluates to true

2.9.2 if-else statements

if-else statements are used to execute a block of code conditional on the truth value of a
boolean expression. An if-else statement has the following general form:

i f ( <boolean expression> )

<list of statements>

// these will be executed only if the

// boolean expression evaluates to true

else

<list of statements>

// these will be executed only if the

// boolean expression evaluates to false

end

Note that if there is nothing to be executed if the boolean expression evaluates to false, then
the else part can be omitted altogether:

i f ( <boolean expression> )

<list of statements>

end

Example 2.7 demonstrates the use of the if-else statement. Sample "6-Program flow.bsf",
located at "$BayESHOME/Samples/1-GettingStarted" contains some more complete examples of the
statement.

� Example 2.7
✞
H Input

// Define x as a scalar equal to 3

x = 3;

// Print a message to the console

// conditional on the value of x

i f (x==3)

print("x is equal to 3");

else

print("x is equal not to 3");

end

✝

☎
H Output

x is equal to 3

✆

2.9.3 for loops

for loops are used to repeatedly execute a block of statements for a given number of times. A
for statement has the following general form:
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for ( <loop index> = <lower value>:<upper value> )

<list of statements>

// these will be executed repeatedly

end

In this statement the loop index is an integer which, upon execution, will be set equal to the
lower value specified in the first line of the statement. During execution the list of statements
will be executed and the loop index value increased by one, until it reaches the upper value
specified in the first line of the statement.

Example 2.8 demonstrates the use of the for statement. Sample "6-Program flow.bsf", lo-
cated at "$BayESHOME/Samples/1-GettingStarted" contains some more complete examples of the
statement.

� Example 2.8
✞
H Input

// Print the value of the loop

// index , i, within the loop

for (i=1:3)

print(i);

end

✝

☎
H Output

i =

1

i =

2

i =

3
✆

2.9.4 while loops

while loops are used to repeatedly execute a block of statements while a condition is true. A
while statement has the following general form:

while ( <boolean expression> )

<list of statements>

// these will be executed repeatedly

end

During execution the boolean expression will be evaluated and, if the result is true, the list
of statements inside the block will be executed repeatedly. The block of statements should
make changes to items appearing in the boolean expression in every iteration, otherwise the
expression will never evaluate to false and the program control will never jump out of the loop.

Example 2.9 demonstrates the use of the while statement. Sample "6-Program flow.bsf",
located at "$BayESHOME/Samples/1-GettingStarted" contains some more complete examples of the
statement.

� Example 2.9✞
H Input

// Print the value of i within a while

// loop

i = 4;

while (i>0)

print(i);

i = i - 1;

end

// It is important to change the value

// of i inside the loop , otherwise the

// program will never leave it

✝

☎
H Output

i =

4

i =

3

i =

2

i =

1
✆
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2.10 User-defined functions

BayES supports user-defined functions. These functions are defined in BayES script files and
can take multiple arguments and return multiple values. User-defined functions are called from
script files or other functions and can be used to perform a particular task that may require
many lines of code, helping to keep the code in the main script tidy. Also, in cases where a task
needs to be performed repeatedly, it is easier to describe the task in a user-defined function
and to call this function at the appropriate places in the script file.

Each user-defined function must be declared and implemented in its own BayES script file.
These special files have a specific form. For example, suppose that we want to define a function
named myFunction that takes a list of arguments, ar1, ar2, ..., uses these argument to do some
calculations and defines a list of return values, rv1, rv2, ..., which will be available after the
function completes its job. The following code should be put in a BayES script file called
myFunction.bsf and this file saved in the current working directory:

function [rv1 , rv2 , ... ] = @myFunction (ar1 , ar2 , ...)

<list of statements>

// these statements will use ar1 , ar2 , ..., and define

// rv1 , rv2 , ..., which will be available in the calling

// workspace once the function completes its job

end

Functions are not meant to be executed independently, but to be called from other scripts (or
other functions). A statement like:

[y1, y2 , ... ] = @myFunction (x1 , x2, ...);

placed within a BayES script represents a call to the user-defined function myFunction. When
such a calling statement is encountered the following process takes place:

1. the arguments x1, x2, ... passed to myFunction in the calling statement are copied and
made available in the function’s workspace as ar1, ar2, ...6

2. program control jumps to the user-defined function myFunction, where the listed statements
are executed and the return values, rv1, rv2, ..., are assigned

3. program control jumps back to the calling script and the function’s return values are
made available to the workspace that contains the calling statement as y1, y2, ...

The directory "$BayESHOME/Samples/4-Functions" contains samples of simple and not-so-simple
functions. Here we will describe how to define and use a simple function called SimpleFunction,
which takes a single argument x and returns 2*x. Suppose the file SimpleFunction.bsf is located
in the current working directory and it contains the following code:

function [y] = @SimpleFunction(x)

// Print a message on the console

print("program control is now in @SimpleFunction");

// Print the value of x on the console

print(x);

// Assign the value 2*x to y

y = 2*x;

// Print a message on the console

print("program control is about to leave @SimpleFunction");

end

The first statement in the function simply notifies the user that program control has passed
to @SimpleFunction by printing a message on the BayES console. The next statement prints the
value of x, as it is defined in the workspace of @SimpleFunction. The third statement assigns

6Each function has its own workspace and it cannot access any elements defined in the workspace of the
calling script (see also Section 2.10.1).
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the value 2*x to y and the last statement, again, prints information on the BayES console that
program control leaves @SimpleFunction.

The code in SimpleFunction.bsf cannot be executed simply by hitting Ctrl+R on the script
editor window: the function needs to be called from another script. This is demonstrated in
Example 2.10.

� Example 2.10
✞ ☎
H Input

// Define a 1x2 matrix z using draws from an exponential distribution

z = exprnd (2.5, 1, 2);

// Call " @SimpleFunction" and assign its return value to w

w = @SimpleFunction(z);

// Print a message on the console to indicate that @SimpleFunction finished

print("\n\nControl is back to the calling script ");

// Print the value of w from the calling script

print(w);

H Output

Program control is now in @SimpleFunction

x =

0.5597008 0.23834727

Program control is about to leave @SimpleFunction

Control is back to the calling script

w =

1.1194016 0.47669454
✝ ✆

2.10.1 Rules for defining and calling functions

The following rules apply when defining and calling functions:

1. each function must be defined in its own BayES script file

2. the keyword function must be the first word in the script file that defines the function

3. the function name must be the same as the file name of the BayES script file that contains
its definition, prepended by ‘@’

4. the function definition ends with the end keyword; everything that follows this keyword
in the script file that defines the function is ignored

5. when calling a function the BayES script file that contains its definition must be in the
current working directory

6. functions can have zero, one, or multiple arguments of different types (matrices, datasets,
strings, etc.)

7. the order in which arguments are passed to a function matters

8. functions can have zero, one, or multiple return values of different types (matrices,
datasets, strings, etc.); if the function returns only one value then the square brack-
ets in the definition and calling statements can be omitted

9. the order in which return values are assigned to elements in the workspace of the calling
script matters

10. functions have their own workspace and arguments are passed by making copies: func-
tions are aware only of items that have been passed to them as arguments and cannot
access items in the workspace of the calling script7

7If the workspace of the calling script has an item with id value x and a function is called, which defines
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2.11 Plotting

BayES provides functions for producing elementary graphics. The following types of plots are
supported:

1. histograms using the hist() function

2. scatter plots (y versus x) using the scatter() function

3. correlograms (acf plots) using the acf() function

4. line plots (y versus x or the values of y versus their row index) using the plot() function

5. kernel density estimates using the kden() function

Section B.16 provides extensive documentation on the plotting functions. The remainder of
this section gives a general overview of how plots are handled in BayES and presents some
simple examples.

When a plotting function is called in BayES in its simple form, a new figure window is
created and the corresponding plot is drawn within this window. Figure windows are named
consecutively as "Figure 1", "Figure 2", etc., and these names can be used to interact with them,
for example to close them programmatically or save their plots in any of the supported graphics
formats. For example, the statement:

close ("Figure 2");

will close the figure window with "Figure 2" appearing on its title bar and release the memory
occupied by this figure. To prevent extreme use of memory resources for presenting plots,
BayES restricts the maximum number of figure windows that are open simultaneously to 20.
This number can be changed using the maxfigures() function.

Once a figure window is closed, its name will be reused. For example, if there are currently
two figure windows open with titles "Figure 1" and "Figure 3" (the user closed the figure window
with title "Figure 2"), the next time a plotting function is used, the title of the new figure
window will be "Figure 2". The statement:

close (all );

closes all currently open figure windows and releases resources.
The titles of figure windows can also be used to export the associated plots to the following

graphics formats:

1. encapsulated postscript (.eps)

2. portable network format (.png)

3. joint photographic experts group (.jpeg)

This is achieved using the export() function, by passing the name of the figure window that
contains the plot to be exported as the first argument of the export() function. Section B.4
provides extensive documentation on the export() function.

The five basic plotting functions mentioned above differ in the number of numerical argu-
ments they take, but all of them have the following optional arguments:

� "title" � "xlabel" � "ylabel" � "grid" � "colors"

These arguments, if provided, must be given after the numerical arguments of the respective
plotting function, separated by commas.8 The values of the first four options should be strings
and of the "colors" option a matrix. The three first options, as presented above, specify the
title of the plot and the labels on the ‘x’ and ‘y’ axes, respectively. The values of the "grid"

another item with id value x, these two items are distinct: altering the value of x defined inside the function
will not affect the value of x in the calling script.

8Optional arguments passed to the plotting functions can be provided in any order, but always come in pairs
(eg. "title"="my title").
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option must equal to either "on" or "off", with the first value requesting that a grid is plotted
on the graph. The last option specifies the colors to be used in the graph and its value must
a matrix with three columns and, possibly, multiple rows. The values in each row represent
a color in RGB (red-green-blue) format and should be between zero and one. The first row
specifies the background color of the graph9 and the second the color of the axes and text
labels. The remaining rows specify the colors to be used when plotting the data.

BayES provides support for figure windows which can contain multiple plots. A call to the
multiplot() function will initialize a figure window which can store multiple plots. Subsequent
calls to the five basic plotting functions, accompanied by calls to the subplot() function, can
be used to populate the spaces of this window with actual plots. See section B.16 for more
details.

Example 2.11 demonstrates how to plot a histogram of a set of values contained in a vector,
while example 2.12 shows how to overlay kernel density estimates of the values contained in two
vectors. Finally, 2.13 demonstrates how to plot a set of functions. Sample "4-Plotting data.bsf",
located at "$BayESHOME/Samples/1-GettingStarted" contains some more complete examples of using
the plotting functions.

� Example 2.11
✞
H Input

// Set the seed for the random -number

// generator and draw 500 numbers from

// a Gamma (4 ,2) distribution

seed(42);

x = gamrnd (4,2,500,1) ;

// Plot a histogram of the values in x

hist(x, 20,

"title "="Histogram of x",

"grid"="on" );

// Export the graph as eps

export( "Figure 1", "./Hist.eps ",

"width "=420, "height "=280 );

✝

☎
H Output

0 1 2 3 4 50

20

40

60

Histogram of x

✆

� Example 2.12
✞
H Input

// Draw two sets of 500 numbers from

// a Gamma (4 ,2) distribution

seed(42);

x = gamrnd (4,2,500,1) ;

y = gamrnd (4,2,500,1) ;

// Overlay the kernel density estima -

// tes for the values in x and y

kden( [ x, y ],

"title "="Kernel density estimate ",

"grid"="on" );

// Export the graph as eps

export( "Figure 1", "./Kden.eps ",

"width "=420, "height "=280 );

✝

☎
H Output

0 2 4 6
0.0

0.1

0.2

0.3

0.4

Kernel density estimate

✆

9Subplots within graphs must have the same background color. The overall background color in graphs that
contain multiple subplots is the background color specified for the subplot at the upper left corner of the graph.
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� Example 2.13
✞
H Input

// Define x-axis values

x = range (0.01 , 4, 0.05);

// Plot the Gamma pdf with varying

// shape parameter

y1 = gampdf (x, 2, 3);

y2 = gampdf (x, 3, 3);

y3 = gampdf (x, 4, 3);

y4 = gampdf (x, 5, 3);

myPlot = plot( [ y1, y2 , y3, y4 ], x,

"title " = "Gamma pdfs",

"xlabel " = "x", "ylabel " = "pdf ",

"grid"="on" );

// Export the graph as eps

export( myPlot , "./ Gampdf .eps ",

"width "=420, "height "=280 );
✝

☎
H Output

0 1 2 3 4
0.0
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Gamma pdfs
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f

✆
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3.1 Overview

BayES is designed to perform some very specific tasks and it recognizes that there could be
other software packages available that are more appropriate for other types of tasks. Instead
of trying to do everything by itself, BayES provides interfaces to these packages to facilitate
communication. This is achieved by means of software-specific interface functions, which allow
the user to pass data and native code to, execute scripts in and retrieve results from each
package, without ever leaving the BayES environment.

When an interface function is called in BayES, control passes to the respective software
package, which starts executing the code provided by the user in the package’s native language.
Once execution completes, control passes back to BayES. Depending on the particular software
package, any output produced by it will be printed on the BayES console, either in real time
or after execution of the external program completes. External programs to which BayES

provides interfaces must be separately installed on the machine on which BayES is currently
used. Furthermore, the locations of executable/binary files of these external software packages
must be known to BayES.1

△! BayES interface functions pass data to and retrieve results from external processes by writing

temporary files in the current working directory. Upon successful completion of the external

program, these files are deleted. Therefore, the user should have write access to the current

working directory for the interface functions to work.

3.2 Interface to JAGS

Just Another Gibbs Sampler (JAGS) is an open-source program which takes as inputs data and
a model specification file (written in JAGS’ own language) and draws samples from the poste-
rior distribution of the model’s parameters or latent variables, picking the most appropriate
sampling method automatically.

BayES’ jags() function provides a convenient interface to JAGS, which allows the user to:

� pass BayES matrices as input data to JAGS

� request JAGS to draw samples from the posterior distribution of parameters specified by
the user, given a model specification file

� retrieve the draws from JAGS, summarize them and print summary statistics on the BayES

console

� store the draws from JAGS in a BayES model item, making them available for post esti-
mation analysis

The general syntax of the jags() function is the following:2

[<model name> = ] jags( <model specification file>

[, "data"=<list of matrices to pass to JAGS> ]
[, "monitor "=<list of parameters to monitor> ]
[, "inits "=<structure of initial values> ]
[, "chains "=<positive integer> ]
[, "burnin "=<positive integer> ]
[, "draws "=<positive integer> ]
[, "thin"=<positive integer> ]
[, "seed"=<positive integer> ]
);

1 BayES can be made aware of the location of a package’s binary/executable either using the setbinary()

function (see section B.17 for more information) or using the main menu, via Help�External Binaries.
2Arguments inside square brackets are optional. Optional arguments passed to the jags() function can be

provided in any order, but always after the mandatory argument (model specification file). Optional arguments
always come in pairs (eg. "chains"=1).

http://mcmc-jags.sourceforge.net/
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where:

� <model name> is a BayES id value which will be associated with the model resulting from
executing the jags() function. If no model name is provided the results from JAGS will still
be returned to BayES and summarized, but they will not be stored for further analysis.
jags(), openbugs() and stan() are the three interface functions that provide the highest
level of integration with BayES: the results from these functions are stored in BayES model
items, on which all BayES functions which operate on models can be used.

� <model specification file> is a string pointing to the file which contains the specifica-
tion of the JAGS model. If the specification file is not in the current directory then
the file name must be prepended by the path to the file, either in absolute terms (eg.
"C:/MyFiles/myModel.txt") or relative to the current working directory (eg. "../myModel.txt").
This is the only mandatory argument of the jags() function.

� "data" specifies the data matrices that will be passed as input to JAGS. <list of matrices>

is a list of the id values of matrices (comma-separated names inside curly brackets), as
they appear in the JAGS model specification file. These matrices must be defined in the
current workspace.

� "monitor" specifies the parameters or latent variables for which JAGS will store the draws
obtained from their posterior distributions. <list of parameters to monitor> is a list of
strings (comma-separated strings inside curly brackets) that specify the names of the
parameters/latent data that should be monitored, as they appear in the JAGS model
specification file. If no monitors are set JAGS will still draw samples from the posterior
but these will not be saved and, subsequently, no BayES model item will be defined upon
return of the jags() function.

� "inits" specifies the initial values per chain used by JAGS. <structure of initial values>

is a BayES structure, the elements of which could be structures themselves. Each element
of the chain-specific structure corresponds to a parameter or latent variable, using the
same id values as the ones used in the JAGS model specification file. It is possible to
provide initial values for all parameters/latent variables or only a subset of them. It is
also possible to leave entire chains uninitialized. In such cases JAGS will generate initial
values for the chains/parameters/latent variables which are not initialized by the user.

� "chains" specifies the number of chains that JAGS will run in parallel. The right-hand
side must be a positive integer and the default value is 1.

� "burnin" specifies the number of draws from the posterior that will be discarded (per
chain) to avoid dependence of the results on initial values. The right-hand side must be
a positive integer and the default value is 10,000.

� "draws" specifies the number of draws from the posterior that will be retained, per chain.
The right-hand side must be a positive integer and the default value is 20,000.

� "thin" specifies the number of draws from the posterior that will be skipped (after the
burn-in phase) per retained draw, to avoid high autocorrelation of the retained draws.
For example, if the thinning parameter is set to 3, then only one in three consecutive
draws will be retained and become available for inference and post-estimation analysis.
The right-hand side must be a positive integer and the default value is 1.

� "seed" specifies the seed for the random-number generator used by JAGS. The right-hand
side must be a positive integer and the default value is 42.

△! Under Linux and macOS systems, the path to the JAGS model specification file must not

contain any spaces.
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As the jags() function executes, JAGS attempts to print output on the system’s command
console. BayES grabs this output and redirects it to the BayES main console in real time. This
output is entirely determined by JAGS and it includes information on the model specification
file used in the current run, any errors or warnings and, most importantly, information on the
progress of the sampler relative to the total number of requested draws from the posterior.

Many of the sample script files in "$BayESHOME/Samples/3-JAGS-OpenBUGS-Stan" contain examples
of using the jags() function, along with JAGS model specification files for simple models. The
JAGS interface is also accessible from the BayES main menu via Interfaces�JAGS.

3.3 Interface to OpenBUGS

OpenBUGS is another open-source program that is very similar to JAGS. It too takes as inputs
data and a model specification file (written in OpenBUGS’ own language) and draws samples
from the posterior distribution of the model’s parameters or latent variables, using an expert
system to pick the most appropriate method for sampling from the posterior.

BayES’ openbugs() function provides a convenient interface to OpenBUGS, which allows the
user to:

� pass BayES matrices as input data to OpenBUGS

� request OpenBUGS to draw samples from the posterior distribution of parameters specified
by the user, given a model specification file

� retrieve the draws from OpenBUGS, summarize them and print summary statistics on the
BayES console

� store the draws from OpenBUGS in a BayES model item, making them available for post
estimation analysis

The general syntax of the openbugs() function is the following:3

[<model name> = ] openbugs ( <model specification file>

[, "data"=<list of matrices to pass to OpenBUGS> ]
[, "monitor "=<list of parameters to monitor> ]
[, "summarize "=<list of parameters to summarize> ]
[, "inits "=<structure of initial values> ]
[, "chains "=<positive integer> ]
[, "burnin "=<positive integer> ]
[, "draws "=<positive integer> ]
[, "thin"=<positive integer> ]
[, "seed"=<positive integer> ]
[, "window "=true| fa l se ]
[, "debug "=true| fa l se ]
);

where:

� <model name> is a BayES id value which will be associated with the model resulting from
executing the openbugs() function. If no model name is provided the results from Open-

BUGS will still be returned to BayES and summarized, but they will not be stored for
further analysis. jags(), openbugs() and stan() are the three interface functions that pro-
vide the highest level of integration with BayES: the results from these functions are
stored in BayES model items, on which all BayES functions which operate on models can
be used.

� <model specification file> is a string pointing to the file which contains the specification
of the OpenBUGS model. If the specification file is not in the current working direc-
tory then the file name must be prepended by the path to the file, either in absolute
terms (eg. "C:/MyFiles/myModel.txt") or relative to the current working directory (eg.
"../myModel.txt"). This is the only mandatory argument of the openbugs() function.

3Arguments inside square brackets are optional. Optional arguments passed to the openbugs() function
can be provided in any order, but always after the mandatory argument (model specification file). Optional
arguments always come in pairs (eg. "chains"=1).

http://www.openbugs.net/w/FrontPage
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� "data" specifies the data matrices that will be passed as input to OpenBUGS. <list of

matrices> is a list of the id values of matrices (comma-separated names inside curly
brackets), as they appear in the OpenBUGS model specification file. These matrices must
be defined in the current workspace.

� "monitor" specifies the parameters or latent variables for which OpenBUGS will store the
draws obtained from their posterior distributions. <list of parameters to monitor> is a
list of strings (comma-separated strings inside curly brackets) that specify the names of
the parameters/latent data that should be monitored, as they appear in the OpenBUGS

model specification file. If no monitors are set OpenBUGS will still draw samples from
the posterior but these will not be saved and, subsequently, no BayES model item will be
defined upon return of the openbugs() function.

� "summarize" specifies the parameters or latent variables for which OpenBUGS will set “sum-
mary monitors”. OpenBUGS will sample from the posterior of these parameters/latent
variables but, instead of storing these draws, it will only provide summary statistics for
them (calculated inline). This option can lead to a large reduction in memory usage
compared to the case where a large number of parameters/latent variables are monitored
using the "monitor" option. The "summarize" option is currently not implemented and will

be ignored.

� "inits" specifies the initial values per chain used by OpenBUGS. <structure of initial

values> is a BayES structure, the elements of which could be structures themselves. Each
element of the chain-specific structure corresponds to a parameter or latent variable,
using the same id values as the ones used in the OpenBUGS model specification file. It is
possible to provide initial values for all parameters/latent variables or only a subset of
them. It is also possible to leave entire chains uninitialized. In such cases OpenBUGS will
generate initial values for the chains/parameters/latent variables which are not initialized
by the user.

� "chains" specifies the number of chains that OpenBUGS will run in parallel. The right-hand
side must be a positive integer and the default value is 1. Note that OpenBUGS can use
up to 14 different values for the seed number of its random-number generators. If more
than 14 chains are requested by the user these seed values will be recycled, effectively
leading to chains with exactly the same draws from the posterior.

� "burnin" specifies the number of draws from the posterior that will be discarded (per
chain) to avoid dependence of the results on initial values. The right-hand side must be
a positive integer and the default value is 10,000.

� "draws" specifies the number of draws from the posterior that will be retained, per chain.
The right-hand side must be a positive integer and the default value is 20,000.

� "thin" specifies the number of draws from the posterior that will be skipped (after the
burn-in phase) per retained draw, to avoid high autocorrelation of the retained draws.
For example, if the thinning parameter is set to 3 then only one in three consecutive
draws will be retained and become available for inference and post-estimation analysis.
The right-hand side must be a positive integer and the default value is 1.

� "seed" specifies the seed for the random-number generator used by OpenBUGS. The right-
hand side must be a positive integer and the default value is 42.

� "window" specifies whether OpenBUGS should run in its own graphical environment (under
Microsoft® Windows® only) or print any output on the BayES console. The default
value value is true, which requests OpenBUGS to run using its own GUI. Under Linux
systems OpenBUGS does not provide a GUI and, therefore, this option is ignored.
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� "debug" specifies whether the OpenBUGS window will remain open after completion of
the Gibbs sampler (under Microsoft® Windows® only). The default value is "false", in
which case the OpenBUGS window closes after completion of the Gibbs sampler and control
is returned to BayES automatically. Because the "debug" option requires an OpenBUGS

window, the value of the "window" option is overwritten to true whenever the user sets
"debug" to true. This option is ignored under Linux systems.

When OpenBUGS runs using its GUI (under Microsoft® Windows® only) it prints any
output on its own output window. When OpenBUGS runs without its GUI then BayES grabs
any OpenBUGS output intended for the system’s command console and redirects it to the
BayES console in real time. This output is entirely determined by OpenBUGS and it includes
information on the stage of the estimation process (model check, loading data, etc.) and
very limited information on the progress of the sampler (only whether the burn-in phase is
complete).

Many of the sample script files in "$BayESHOME/Samples/3-JAGS-OpenBUGS-Stan" contain examples
of using the openbugs() function, along with OpenBUGS model specification files for simple
models. The OpenBUGS interface is also accessible from the BayES main menu via Interfaces

�OpenBUGS.

3.4 Interface to Stan

Stan is another open-source program similar to JAGS and OpenBUGS, but with two important
differences (i) the language it uses is slightly more complex, but also more flexible, and (ii) it
uses specialized sampling algorithms designed to work efficiently on hierarchical models. No
matter these differences, Stan also takes as inputs data and a model specification file (written
in Stan’s own language) and draws samples from the posterior distribution of the model’s
parameters or latent variables, or maximizes the respective likelihood function.

BayES’ stan() function provides a convenient interface to Stan, which allows the user to:

� pass BayES matrices as input data to Stan

� request Stan to draw samples from the posterior distribution of the model’s parameters
and latent data or maximize the likelihood function, given a model specification file

� retrieve the draws or other results from Stan, summarize them and print summary statis-
tics on the BayES console

� store the draws or maximum-likelihood estimates from Stan in a BayES model item, mak-
ing them available for post estimation analysis

The general syntax of the stan() function is the following:4

[<model name> = ] stan( <model specification file>

[, "method "="sample "|"variational "|"optimize " ]
[, "data"=<list of matrices to pass to Stan> ]
[, "inits "=<structure of initial values> ]
[, "output "=<file where Stan should store its results> ]
[, "diagnostic "=<file where Stan should store results for diagnostics> ]
[, "options "=<additional command-line options> ]
[, "summarize "=true| fa l se ]
[, "diagnose "=true| fa l se ]
[, "chains "=<positive integer> ]
[, "burnin "=<positive integer> ]
[, "draws "=<positive integer> ]
[, "thin"=<positive integer> ]
[, "seed"=<positive integer> ]
[, "refresh "=<positive integer> ]
);

4Arguments inside square brackets are optional. Optional arguments passed to the stan() function can be
provided in any order, but always after the mandatory argument (model specification file). Optional arguments
always come in pairs (eg. "chains"=1).

http://mc-stan.org
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where:

� <model name> is a BayES id value which will be associated with the model resulting from
executing the stan() function. If no model name is provided the results from Stan will still
be returned to BayES and summarized, but they will not be stored for further analysis.
jags(), openbugs() and stan() are the three interface functions that provide the highest
level of integration with BayES: the results from these functions are stored in BayES model
items, on which all BayES functions which operate on models can be used.

� <model specification file> is a string pointing to the file which contains the specification
of the Stan model. If the specification file is not in the current working directory then
the file name must be prepended by the path to the file, either in absolute terms (eg.
"C:/MyFiles/myModel.stan") or relative to the current directory (eg. "./myModel.stan"). This
is the only mandatory argument of the stan() function.

� "method" specifies the Stan method to be used. This can be one of the strings "sample",
"variational" or "optimize", each one of them invoking the respective Stan method. Note
that Stan’s “diagnose” method cannot be accessed in BayES directly, but diagnostic tests
can be performed within Stan by setting the "diagnose" option to true in the stan() func-
tion. The default value of the "method" argument is "sample", in which case Stan samples
from the posterior distribution of the model’s parameters using a Hamiltonian Monte
Carlo (HMC) algorithm of fixed-parameter sampling (depending on other options).

� "data" specifies the data matrices that will be passed as input to Stan. <list of matrices>

is a list of the id values of matrices (comma-separated names inside curly brackets), as
they appear in the Stan model specification file. These matrices must be defined in the
current workspace.

� "inits" specifies the initial values per chain used by Stan. <structure of initial values>

is a BayES structure, the elements of which could be structures themselves. Each element
of the chain-specific structure corresponds to a parameter or latent variable, using the
same id values as the ones used in the Stan model specification file. It is possible to
provide initial values for all parameters/latent variables or only a subset of them. It is
also possible to leave entire chains uninitialized. In such cases Stan will generate initial
values for the chains/parameters/latent variables which are not initialized by the user,
using its default options.

� "output" specifies the file to which Stan should store its results. If the output file is not
in the current directory then the file name must be prepended by the path to the file,
either in absolute terms (eg. "C:/MyFiles/myResults.csv") or relative to the current working
directory (eg. "./myResults.csv"). If the output file is not specified then BayES will create
temporary files in the current working directory. If, however, the user provides a name
for the output file(s), these will persist even after exiting BayES.

� "diagnostic" specifies the file to which Stan should store results that can be used for
post-estimation diagnostics. If the diagnostic file is not in the current directory then
the file name must be prepended by the path to the file, either in absolute terms (eg.
"C:/MyFiles/myDgnstcs.csv") or relative to the current directory (eg. "./myDgnstcs.csv"). If
the user provides a name for the diagnostic file(s), these will persist even after exiting
BayES.

� "summarize" indicates whether the results produced by Stan (draws or values at which the
likelihood function is maximized) should be summarized withing Stan, before returning
control to BayES. The default value of "summarize" is true.

� "diagnose" indicates whether Stan should run diagnostic tests on the results it produced
(draws or values at which the likelihood function is maximized), before returning control
to BayES. The default value of "summarize" is true. Note that this optional argument
effectively replaces Stan’s “diagnose” method.
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� "options" can be used to pass additional options to Stan, using its extensive argument
tree. These options should be provided to BayES’ stan() function as a string, which is
then passed verbatim to Stan. For example, setting the right-hand side of the "options"

argument to "algorihtm=fixed_param" requests Stan to use the fixed-parameter sampler
under its “sample” method.

� "chains" specifies the number of chains that Stan will run in parallel. If the "method"

argument of the stan() function is set to "sample" (default), BayES spawns as many Stan

processes as the number of chains, which run in parallel and also mutes Stan’s output on
the console. If, however, the "method" argument is set to either "variational" or "optimize",
the "chains" argument is ignored.

� "burnin" performs different functions under different Stan methods. If the "method" argu-
ment of the stan() function is set to "sample" (default), "burnin" specifies the number of
draws from the posterior that will be discarded (per chain) to avoid dependence of the
results on initial values. If the "method" argument is set to "variational", "burnin" specifies
the maximum number of ADVI iterations. This argument is ignored when the "method"

argument is set to "optimize". The right-hand side must be a positive integer and the
default value is 10,000.

� "draws" performs different functions under different Stan methods. If the "method" argu-
ment of the stan() function is set to "sample" (default), or "variational", "draws" specifies
the number of draws from the posterior that will be retained, per chain. If the "method"

argument is set to "optimize", "draws" specifies the maximum number of iterations of the
algorithm that is used to maximize the likelihood. The right-hand side must be a positive
integer and the default value is 20,000.

� "thin" specifies, when the "method" argument of the stan() function is set to "sample"

(default), the number of draws from the posterior that will be skipped (after the burn-
in phase) per retained draw, to avoid high autocorrelation of the retained draws. For
example, if the thinning parameter is set to 3, then only one in three consecutive draws
will be retained and become available for inference and post-estimation analysis. The
"thin" argument is ignored when the "method" argument is set to "variational" or "optimize".
The right-hand side must be a positive integer and the default value is 1.

� "seed" specifies the seed for the random-number generator used by Stan. The right-hand
side must be a positive integer and the default value is 42.

� "refresh" specifies the rate at which Stan prints information about its progress on the
console. For example, if "refresh" is set equal to 100, Stan will print information every
100 iterations of the respective algorithm. The right-hand side must be a positive integer
and the default value is 1000.

△! The path to the Stan model specification file must not contain any spaces.

As the stan() function executes, Stan attempts to print output on the system’s command
console. BayES grabs this output and redirects it to the BayES main console in real time. This
output is entirely determined by Stan and it includes information on the model specification
file used in the current run, all the options used, any errors or warnings and, most importantly,
information on the progress of the algorithm being used. Note that when multiple chains are
run in parallel (under Stan’s “sample” method), BayES mutes Stan’s output on the console.

Many of the sample script files in "$BayESHOME/Samples/3-JAGS-OpenBUGS-Stan" contain examples
of using the stan() function, along with Stan model specification files for simple models. The
Stan interface is also accessible from the BayES main menu via Interfaces�Stan.
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3.5 Interface to R

R is a free software environment designed for statistical computing and graphics. Compared
to JAGS and OpenBUGS, R has a much more complete programming language and encompasses
a vast array of computational and statistical techniques. Nevertheless, it too operates using
script files written in its native language, which makes running it in batch mode feasible.

BayES’ rproject() function provides a convenient interface to R, which allows the user to:

� pass BayES matrices and datasets as input to R

� request R to execute code written in its native language

� retrieve output from R and store it in BayES dataset and matrix items; all data to be
returned from R are stored inside a BayES structure item

The general syntax of the rproject() function is the following:5

[<structure name> = ] rproject ( <R script file>

[, "data"=<list of matrices/datasets to pass to R> ]
[, "return "=<list of matrices/dataframes to retrieve from R> ]
);

where:

� <structure name> is a BayES id value which will be associated with the BayES structure
that the rproject() function returns. This structure will contain any R matrices or data
frames that the user requests to be returned to BayES (using the "return" option) after
execution of the R script completes.

� <R script file> is a string pointing to the file which contains the code (written in R’s
language) that R will be requested to execute. If this file is not in the current directory
then the file name must be prepended by the path to the file, either in absolute terms (eg.
"C:/MyFiles/myScript.R") or relative to the current working directory (eg. "../myScript.R").
This is the only mandatory argument of the rproject() function.

� "data" specifies the data that will be passed as input to R. These can be either BayES

datasets or matrices. <list of matrices/datasets to pass to R> is a list of the id values of
matrices or datasets (comma-separated names inside curly brackets), as they appear in
the R script file. These matrices or datasets must be defined in the current workspace.
When a BayES matrix is passed as input to R then this becomes available as an R matrix
in R. When a BayES dataset is passed as input to R then this becomes available as an R

data frame in R.

� "return" specifies the R objects that will be returned to BayES when execution of the
R script completes. <list of matrices/dataframes to retrieve from R> is a list of id values
(comma-separated id values inside curly brackets) that specify the names of the matri-
ces/datasets that should be returned from R, as they appear in the R script file. Any R

matrix that is returned will be stored in BayES as a matrix, while any R data frame will
be stored as a BayES dataset. These matrices/datasets are grouped together into a BayES

structure. Passing other data types (structures, lists, strings, etc.) between BayES and R

is not supported.

As the rproject() function executes, R attempts to print output on the system’s command
console. BayES grabs this output and redirects it to the BayES main console in real time. This
output is entirely determined by R and the commands contained in the R script file provided
to rproject().

The sample script file in "$BayESHOME/Samples/5-Interfaces/rproject" contains an example of
using the rproject() function, along with a simple R script file. The R interface is also accessible
from the BayES main menu via Interfaces�R project.

5Arguments inside square brackets are optional. Optional arguments passed to the rproject() function can
be provided in any order, but always after the mandatory argument (R script file). Optional arguments always
come in pairs (eg. "data"={myDataset,myMatrix}).

https://www.r-project.org/
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3.6 Interface to Stata®

Stata is a proprietary software package designed for data analysis, data management, and
graphics. Stata provides canned procedures for estimating many popular econometric models,
most of them being frequentist. However, recent versions of Stata also include Bayesian proce-
dures. Stata has a complete GUI but it also features a simple scripting language, which makes
running it in batch mode feasible.

BayES’ stata() function provides a convenient interface to Stata, which allows the user to:

� pass BayES matrices and a single dataset as input to Stata

� request Stata to execute code written in its native language

� retrieve output from Stata and store it in BayES dataset and matrix items; all data to be
returned from Stata are stored inside a BayES structure item

The general syntax of the stata() function is the following:6

[<structure name> = ] stata ( <Stata .do file>

[, "data"=<list of matrices/dataset to pass to Stata> ]
[, "return "=<list of matrices to retrieve from Stata> ]
);

where:

� <structure name> is a BayES id value which will be associated with the BayES structure
that the stata() function returns. This structure will contain any Statamatrices or dataset
that the user requests to be returned to BayES (using the "return" option) after execution
of the Stata .do file completes.

� <Stata .do file> is a string pointing to the file which contains the code (written in Stata’s
language) that Stata will be requested to execute. If this file is not in the current directory
then the file name must be prepended by the path to the file, either in absolute terms (eg.
"C:/MyFiles/myFile.do") or relative to the current working directory (eg. "../myFile.do").
This is the only mandatory argument of the stata() function.

� "data" specifies the data that will be passed as input to Stata. <list of matrices/dataset

to pass to Stata> is a list of the id values of matrices or a dataset (comma-separated
names inside curly brackets), as they appear in the Stata .do file. The list can contain
any number of BayES matrices and at most one BayES dataset. When a BayES matrix is
passed as input to Stata then this becomes available as a Stata matrix in Stata. When
a BayES dataset is passed as input to Stata then this becomes available in Stata as its
dataset.7 These matrices/dataset must be defined in the current workspace.

� "return" specifies the Stata objects that will be returned to BayES when execution of
the .do file completes. <list of matrices to retrieve from Stata> is a list of id values
(comma-separated id values inside curly brackets) that specify the names of the matrices
that should be returned from Stata, as they appear in the Stata .do file. Any Stata matrix
that is returned will be stored in BayES as a matrix. If a dataset is available in Stata

when execution of the code contained in the provided .do file completes, then stata()

retrieves this Stata dataset and stores it as a BayES dataset, even is not requested by
the user.8 These retrieved matrices/dataset are grouped together into a BayES structure.
Passing other data types (structures, models, strings, etc.) between BayES and Stata is
not supported.

6Arguments inside square brackets are optional. Optional arguments passed to the stata() function can be
provided in any order, but always after the mandatory argument (Stata .do file). Optional arguments always
come in pairs (eg. "data"={myDataset,myMatrix}).

7Stata can handle only a single dataset at a time. If the user attempts to pass more than one datasets as
data to Stata, stata() will issue an error.

8If you do not want the Stata dataset to be returned to BayES, simply include clear as the last line of code
in the provided Stata .do file.

http://www.stata.com/
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When the stata() function calls Stata, Stata starts only part of its GUI and executes the
code contained in the provided Stata .do file. BayES automatically directs any Stata output
to a log file. When execution of the code contained in the .do file completes BayES reads the
Stata output and prints it on the BayES console. Therefore, BayES may appear frozen during
the time Stata executes the commands in the .do file. The output printed on the BayES console
is entirely determined by Stata and the commands contained in the Stata .do file provided to
stata().

The sample script file in "$BayESHOME/Samples/5-Interfaces/stata" contains an example of using
the stata() function, along with a simple Stata .do file. The Stata interface is also accessible
from the BayES main menu via Interfaces�Stata®.

3.7 Interface to MATLAB®

MATLAB is a proprietary software platform designed for solving engineering and scientific prob-
lems. Although it provides some toolboxes that facilitate statistical analysis, in general, and
econometric modeling, in particular (mostly time-series models), MATLAB is primarily known
for its extensive and easy to use language. This is largely a matrix-based language, specifically
designed for solving computational problems.

BayES’ matlab() function provides a convenient interface to MATLAB, which allows the user
to:

� pass BayES matrices and datasets as input to MATLAB

� request MATLAB to execute code written in its native language

� retrieve output from MATLAB and store it in BayES matrix items; all data to be returned
from MATLAB are stored inside a BayES structure item

The general syntax of the matlab() function is the following:9

[<structure name> = ] matlab ( <MATLAB .m file>

[, "data"=<list of matrices/datasets to pass to MATLAB> ]
[, "return "=<list of matrices to retrieve from MATLAB> ]
[, "options "=<string of options when starting MATLAB> ]
);

where:

� <structure name> is a BayES id value which will be associated with the BayES structure
that the matlab() function returns. This structure will contain any MATLAB matrices that
the user requests to be returned to BayES (using the "return" option) after execution of
the MATLAB .m file completes.

� <MATLAB .m file> is a string pointing to the file which contains the code (written in MAT-

LAB’s language) that MATLAB will be requested to execute. If this file is not in the
current directory then the file name must be prepended by the path to the file, either
in absolute terms (eg. "C:/MyFiles/myFile.m") or relative to the current working directory
(eg. "../myFile.m"). This is the only mandatory argument of the matlab() function.

� "data" specifies the data that will be passed as input to MATLAB. These can be either
BayES datasets or matrices. <list of matrices/datasets to pass to MATLAB> is a list of the
id values of matrices or datasets (comma-separated names inside curly brackets), as they
appear in the MATLAB .m file. These matrices or datasets must be defined in the current
workspace. When either a BayES matrix or dataset is passed as input to MATLAB then it
becomes available in MATLAB as a MATLAB matrix. That is, BayES datasets are stripped
of their additional information (most importantly, variable names and dataset structure)
and only the raw data are passed to MATLAB.

9Arguments inside square brackets are optional. Optional arguments passed to the matlab() function can
be provided in any order, but always after the mandatory argument (MATLAB .m file). Optional arguments
always come in pairs (eg. "data"={myDataset,myMatrix}).

http://mathworks.com/products/matlab/
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� "return" specifies the MATLAB matrices that will be returned to BayES when execution
of the MATLAB .m file completes. <list of matrices to retrieve from MATLAB> is a list of
id values (comma-separated id values inside curly brackets) that specify the names of
the matrices that should be returned from MATLAB, as they appear in the MATLAB .m

file. Any MATLAB matrix that is returned will be stored in BayES as a matrix and all
returned matrices are grouped together into a BayES structure. Passing other data types
(structures, cells, strings, etc.) between BayES and MATLAB is not supported.

� "options" specifies the MATLAB options to be passed to the command-line argument when
calling MATLAB. All these options should be provided as a single string. The default value
is:
"-nojvm -nodesktop -nodisplay -nosplash -minimize -wait -r"

and has the following effects:

– nojvm: starts MATLAB without the JVM software. Features that require Java soft-
ware (such as the desktop tools and graphics) are not supported.

– nodesktop: runs the JVM software without opening the MATLAB desktop

– nodisplay: starts the JVM software without starting the MATLAB desktop

– nosplash: does not display the splash screen during startup

– minimize: minimizes the MATLAB window

– wait: blocks the script from continuing until the results fromMATLAB are generated.

– r: executes the MATLAB statement, specified as a string or as the name of a MATLAB

script or function. This should always be used as the last option because BayES

appends to this option the location of the provided MATLAB .m file.

As the matlab() function executes with the above options, MATLAB attempts to print output
on the system’s command console. BayES grabs this output and redirects it to the BayES

main console in real time. This output is entirely determined by MATLAB and the commands
contained in the MATLAB .m file provided to matlab().

The sample script file in "$BayESHOME/Samples/5-Interfaces/matlab" contains an example of
using the matlab() function, along with a simple MATLAB .m file. The MATLAB interface is also
accessible from the BayES main menu via Interfaces�MATLAB®.

3.8 Interface to GNU Octave

GNU Octave is free software designed as a matrix programming language, which is largely com-
patible with MATLAB. Later versions of GNU Octave feature a simple GUI, but the vast majority
of functions can still be accessed only using code. GNU Octave is intended for numerical com-
putations, in general, and graphics, but it can be also used for performing Bayesian inference,
especially when using some of its statistics-oriented loadable modules.

BayES’ octave() function provides a convenient interface to GNU Octave, which allows the
user to:

� pass BayES matrices and datasets as input to GNU Octave

� request GNU Octave to execute code written in its native language

� retrieve output from GNU Octave and store it in BayES matrix items; all data to be
returned from GNU Octave are stored inside a BayES structure item

The general syntax of the octave() function is the following:10

10Arguments inside square brackets are optional. Optional arguments passed to the octave() function can
be provided in any order, but always after the mandatory argument (GNU Octave .m file). Optional arguments
always come in pairs (eg. "data"={myDataset,myMatrix}).

https://www.gnu.org/software/octave/
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[<structure name> = ] octave ( <GNU Octave .m file>

[, "data"=<list of matrices/datasets to pass to GNU Octave> ]
[, "return "=<list of matrices to retrieve from GNU Octave> ]
);

where:

� <structure name> is a BayES id value which will be associated with the BayES structure
that the octave() function returns. This structure will contain any GNU Octave matrices
that the user requests to be returned to BayES (using the "return" option) after execution
of the GNU Octave .m file completes.

� <GNU Octave .m file> is a string pointing to the file which contains the code (written in
GNU Octave’s language) that GNU Octave will be requested to execute. If this file is not in
the current directory then the file name must be prepended by the path to the file, either
in absolute terms (eg. "C:/MyFiles/myFile.m") or relative to the current working directory
(eg. "../myFile.m"). This is the only mandatory argument of the octave() function.

� "data" specifies the data that will be passed as input to GNU Octave. These can be either
BayES datasets or matrices. <list of matrices/datasets to pass to GNU Octave> is a list of
the id values of matrices or datasets (comma-separated names inside curly brackets), as
they appear in the GNU Octave .m file. These matrices or datasets must be defined in the
current workspace. When either a BayES matrix or dataset is passed as input to GNU

Octave then it becomes available as a GNU Octave matrix. That is, BayES datasets are
stripped of their additional information (most importantly, variable names and dataset
structure) and only the raw data are passed to GNU Octave.

� "return" specifies the GNU Octave matrices that will be returned to BayES when execution
of the GNU Octave .m file completes. <list of matrices to retrieve from GNU Octave> is a
list of id values (comma-separated id values inside curly brackets) that specify the names
of the matrices that should be returned from GNU Octave, as they appear in the GNU

Octave .m file. Any GNU Octave matrix that is returned will be stored in BayES as a
matrix and all returned matrices are grouped together into a BayES structure. Passing
other data types (structures, cells, strings, etc.) between BayES and GNU Octave is not
supported.

As the octave() function executes, GNU Octave attempts to print output on the system’s
command console. BayES grabs this output and redirects it to the BayES main console in real
time. This output is entirely determined by GNU Octave and the commands contained in the
GNU Octave .m file provided to octave().

The sample script file in "$BayESHOME/Samples/5-Interfaces/octave" contains an example of
using the octave() function, along with a simple GNU Octave .m file. The GNU Octave interface
is also accessible from the BayES main menu via Interfaces�GNU Octave.

3.9 The system function

Apart from the functions that BayES provides to facilitate communication with other scientific
software, the system() function can be used to give access to the operating system’s command
line. This function works slightly differently on Microsoft® Windows® and Linux/macOS
systems:

1. on Linux and macOS systems the system() function executes the command passed
to it as a string. For example, the statement:

system("ls");

will list all folders and files located in the current working directory, while the statement:

system("bash myScript .sh");
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will execute the commands contained in the shell script file myScript.sh (assuming that
such a file exists in the current directory). In both cases, the output of the command
passed to system() will be directed to the BayES console.

2. on Microsoft® Windows® systems the system() function executes the command
passed to it as a string, after prepending it with the string "cmd /Q /C ". For example,
when the user runs:

system("dir ");

the command submitted to the Microsoft® Windows® shell is actually "cmd /Q /C dir".
This is done so that the system() function can call both Microsoft® Windows® appli-
cations, with a statement like:

system("notepad ");

as well as Microsoft® Windows® DOS commands, such as the dir command used in
the example above.

cmd requests Microsoft® Windows® to start a new shell to execute the command or
start the application and the two option specifiers have the following effect:

� /C: terminates the shell after the command finishes execution

� /Q: turns echo off

A statement like:

system("myScript .bat ");

will execute the DOS commands contained in the myScript.bat batch file (assuming that
such a file exists in the current directory). If the command to be executed contains
spaces, then it can be enclosed in double-quote marks. For example:

system("\"copy myFile .txt .\ AnotherFolder\"");

In all cases, any output sent to the Microsoft® Windows® console by the program or
command will be redirected to the BayES console.

The script file "1-System control statements.bsf", located at "$BayESHOME/Samples/6-AdvancedUsage"

contains an extensive example of using the system() function. Note that this file differs between
Microsoft® Windows® and Linux/macOS systems and the BayES installer saves only the
relevant file for the respective host system.
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4.1 Basic linear model

Mathematical representation

yi = x′
iβ + εi, εi ∼ N

(

0, 1
τ

)

(4.1)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� τ is the precision of the error term: σ2
ε = 1

τ

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

Syntax

[<model name> = ] lm( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

The optional arguments for the simple linear model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
τ tau precision parameter of the error term, εi
σε sigma_e standard deviation of the error term: σε = 1/τ1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a simple linear model is created, then the following
results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and τ
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ");

myData .constant = ones(rows(myData ), 1);

lm( y ∼ constant x1 x2 x3);
✝ ✆
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Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = lm(y ∼ constant x1 x2 x3 ,

"m"=ones(4,1) , "P" = 0.1* eye (4,4) ,

"a_tau"=0.01 , "b_tau "=0.01 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

plot(myModel .tau ,

"title"="draws from the posterior of tau ",

"grid"="on");
✝ ✆
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4.2 Heteroskedastic linear model

Mathematical representation

yi = x′
iβ + εi εi ∼ N

(

0, 1
τi

)

(4.2)

log τi = w′
iδ + vi vi ∼ N

(

0, 1
φ

)

(4.3)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� τi is the precision of the error term for observation i: σ2
εi =

1
τi

� wi is an L×1 vector that stores the values of the L variables that determine the precision
of the error term for observation i

� δ is an L×1 vector of parameters

� φ is the precision of the error term in the equation for log τi: σ
2
v = 1

φ

Priors

Parameter Probability density function Default hyperparameters

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0K , Pβ = 0.001 · IK
δ p (δ) = |Pδ|

1/2

(2π)L/2 exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0L, Pδ = 0.01 · IL
φ p (φ) =

b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 0.001, bφ = 0.001

Syntax

[<model name> = ] lm( y ∼ x1 x2 ... xK | w1 w2 . . . wL [,<options>] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� w1 w2 . . . wK is a list of the names of the L variables which determine the precision of εi,
as they appear in the dataset used for estimation; when a constant term is to be included
in the precision equation, this must be requested explicitly

The optional arguments for the heteroskedastic linear model are:2

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1

2Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"seed" value of the seed for the random-number generator (positive integer); the
default value is 42

Hyperparameters

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"m_delta" mean vector of the prior for δ (L×1 vector); the default value is 0L

"P_delta" precision matrix of the prior for δ (L×L symmetric and positive-definite
matrix); the default value is 0.01·IL

"a_phi" shape parameter of the prior for φ (positive number); the default value is
0.001

"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables in

the observed equation
δ variable_name vector of parameters associated with the independent variables in

the precision equation
φ phi precision parameter of the error term in the precision equation,

vi
σv sigma_v standard deviation of the error term in the precision equation:

σv = 1/φ1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a heteroskedastic linear model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β, δ and φ
y$x1,. . .,y$xK vectors containing the draws from the posterior of the parameters asso-

ciated with variables x1,. . .,xK (the names of these vectors are the names
of the variables that were included in the right-hand side of the model,
prepended by y$, where y is the name of the dependent variable; this is
done so that the samples on the parameters associated with a variable that
appears in both x and w lists can be distinguished)

logtau$z1,. . .,
logtau$zL

vectors containing the draws from the posterior of the parameters asso-
ciated with variables w1,. . .,wL (the names of these vectors are the names
of the variables that were included in the w list, in the right-hand side of
the model, prepended by logtau$; this is done so that the samples on the
parameters associated with a variable that appears in both x and w lists
can be distinguished)

phi vector containing the draws from the posterior of φ
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model



4.2. HETEROSKEDASTIC LINEAR MODEL 43

nburnin the number of burn-in draws per chain that were used when estimating
the model

ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset3 .csv ");

myData .constant = ones(rows(myData ), 1);

lm( y ∼ constant x1 x2 x3 | constant z1 z2);
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset3 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = lm(y ∼ constant x1 x2 x3 | constant z1 z2,

"m_beta "=ones (4,1) , "P_beta " = 0.01* eye (4,4) ,

"m_delta "=ones(3,1) , "P_delta " = 0.1* eye (3,3) ,

"a_phi"=0.01 , "b_phi "=0.001 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

plotdraws (phi , "model "=myModel );

plotdraws (logtau$z2 , "model "=myModel );
✝ ✆
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4.3 Random-effects linear model

Mathematical representation

yit = αi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

(4.4)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� yit is the value of the dependent variable for group i, observed in period t

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� β is a K×1 vector of parameters

� τ is the precision of the observation-specific error term: σ2
ε = 1

τ

� αi is the group-specific error term for group i

� ω is the precision of the group-specific error term: σ2
α = 1

ω

•i The mean of the distribution of the αis is restricted to zero and, therefore, these are simply

group-specific errors terms. However, including a constant term in the set of independent

variables is valid and leads to a specification equivalent to one where the group effects are

draws from a normal distribution with mean equal to the parameter associated with the

constant term and precision ω.

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

ω p (ω) =
baω
ω

Γ(aω)ω
aω−1e−ωbω aω = 0.01, bω = 0.001

Syntax

[<model name> = ] lm_re( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i Before using the lm_re() function the dataset used for estimation must be declared as a

panel dataset using the set_pd() function (see section B.13).

△! BayES automatically drops from the sample used for estimation groups which are observed

only once. This is because for these groups the group effect (αi) cannot be distinguished

from the error term (εit).
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The optional arguments for the random-effects linear model are:3

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
"a_omega" shape parameter of the prior for ω (positive number); the default value is

0.01
"b_omega" rate parameter of the prior for ω (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
τ tau precision parameter of the observation-specific error term, εit
ω omega precision parameter of the group-specific error term, αi

σε sigma_e standard deviation of the observation-specific error term: σε =
1/τ1/2

σα sigma_alpha standard deviation of the group-specific error term: σα = 1/ω1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-effects linear model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β, τ and ω
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
omega vector containing the draws from the posterior of ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

3Optional arguments are always given in option-value pairs (eg. "chains"=3).
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alpha_i N×1 vector that stores the group-specific errors; the values in this vector
are not guaranteed to be in the same order as the order in which the
groups appear in the dataset used for estimation; use the store() function
to associate the values in alpha_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

The random-effects linear model uses the store() function to associate the group effects
(alpha_i) with specific observations and store their values in the dataset used for estimation.
The generic syntax for a statement involving the store() function after estimation of a random-
effects linear model is:

store ( alpha_i , <new variable name>, ["model"=<model name>] );

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

lm_re ( y ∼ constant x1 x2 x3 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

myModel = lm_re (y ∼ constant x1 x2 x3 ,

"m"=ones(4,1) , "P" = 0.1* eye (4,4) ,

"a_tau"=0.01 , "b_tau "=0.01 ,

"a_omega "=0.1, "b_omega "=0.01 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

store ( alpha_i , re , "model " = myModel );

test( myModel .omega > 8 );
✝ ✆



4.4. RANDOM-COEFFICIENTS LINEAR MODEL 47

4.4 Random-coefficients linear model

Mathematical representation

yit = z′itγi + x′
itβ + εit, εit ∼ N

(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1
)

(4.5)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

and Ti could be equal to one for all i (cross-sectional data)

� yit is the value of the dependent variable for group i, observed in period t

� zit is a K×1 vector that stores the values of the K independent variables which are
associated with group-specific coefficients, for group i, observed in period t

� xit is an L×1 vector that stores the values of the L independent variables which are
associated with coefficients common to all groups, for group i, observed in period t (L
could be zero)

� γi is a K×1 vector of parameters associated with group i

� γ̄ is a K×1 vector of parameters that represents the mean of the γis

� Ω is a K×K precision matrix for the distribution of the γis

� β is an L×1 vector of parameters

� τ is the precision of the error term: σ2
ε = 1

τ

Priors

Parameter Probability density function Default hyperparameters

γ̄ p (γ̄) =
|Pγ |

1/2

(2π)K/2 exp
{

− 1
2 (γ̄ −mγ)

′
Pγ (γ̄ −mγ)

}

mγ = 0K , Pγ = 0.001 · IK

Ω p (Ω) = |Ω|
n−K−1

2 |V−1|n/2

2nK/2ΓK(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

n = K2, V = 100
K · IK

β p (β) =
|Pβ |

1/2

(2π)L/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0L, Pβ = 0.001 · IL
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

Syntax

[<model name> = ] lm_rc( y ∼ z1 z2 ... zK [| x1 x2 . . . xL ] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� z1 z2 . . . zK is a list of the names, as they appear in the dataset used for estimation,
of the independent variables which are associated with group-specific coefficients; when
a constant term is to be included in the set of group-specific coefficients this must be
requested explicitly

� x1 x2 . . . xL is is a list of the names, as they appear in the dataset used for estimation, of
the independent variables which are associated with coefficients common to all groups;
when a constant term is to be included in the set of common coefficients, this must be
requested explicitly

•i An independent variable could be included in either the x or the z variable list, depending

on whether the parameter associated with this variable is common to all groups or not.

However, including a variable in both lists would lead to exact multicollinearity and, in this

case, BayES will issue an error.
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•i Before using the lm_rc() function the dataset used for estimation must be declared as a

panel dataset using the set_pd() function (see section B.13). In the case of cross-sectional

data, the dataset still needs to be declared as a panel, but the group-id variable could be

constructed as a list of unique integers using, for example, the range() function.

△! For groups observed only once, a group-specific parameter associated with a constant term

cannot be distinguished from the error term (εit). Thus, a warning is produced when a

constant term is included in the z list and the dataset contains at least one group which is

observed only once.

The optional arguments for the random-coefficients linear model are:4

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m_gamma" mean vector of the prior for γ̄ (K×1 vector); the default value is 0K

"P_gamma" precision matrix of the prior for γ̄ (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"V" scale matrix of the prior for Ω (K×K symmetric and positive-definite matrix);
the default value is 100

K ·IK
"n" degrees-of-freedom parameter of the prior for Ω (real number greater than or

equal to K); the default value is K2

"m_beta" mean vector of the prior for β (L×1 vector); the default value is 0L

"P_beta" precision matrix of the prior for β (L×L symmetric and positive-definite
matrix); the default value is 0.001·IL

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
γ̄ variable_name vector of parameters associated with the independent variables in

the z list; these are the means of the group-specific parameters
β variable_name vector of parameters associated with the independent variables in

the x list
τ tau precision parameter of the error term, εi
σε sigma_e standard deviation of the error term: σε = 1/τ1/2

4Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-coefficients linear model is created, then
the following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of γ̄, β, τ and the unique
elements of Ω

z1,. . .,zK vectors containing the draws from the posterior of the mean of the group-
specific coefficients (γ̄s) associated with variables z1,. . .,zK (the names of
these vectors are the names of the variables that were included in the
right-hand side of the model)

x1,. . .,xL vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xL (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
Omega_i_j vectors containing the draws from the posterior of the unique elements of

Ω; because Ω is symmetric, only (K−1)K
2 +K of its elements are stored

(instead of all K2 elements); i and j index the row and column of Ω,
respectively, at which the corresponding element is located

Omega K×K matrix that stores the posterior mean of Ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

gamma_i N×K matrix that stores the group-specific coefficients for the variables
in the z list; the values in this matrix are not guaranteed to be in the
same order as the order in which the groups appear in the dataset used
for estimation; use the store() function to associate the values in gamma_i

with the observations in the dataset
nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

The random-coefficients linear model uses the store() function to associate the group-
specific parameters (gamma_i) with specific observations and store their values in the dataset
used for estimation. The generic syntax for a statement involving the store() function after
estimation of a random-coefficients linear model is:

store ( gamma_i , <new variable name prefix>, ["model"=<model name>] );

This statement will generate K additional variables in the dataset used for estimation of the
random-coefficients model, with names constructed by prepending the prefix provided as the
second argument to store() to the names of the variables which are associated with group-
specific coefficients.
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Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

// all rhs variables are associated with group -specific coefficients

lm_rc ( y ∼ constant x1 x2 x3);
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

// only the constant term and the coefficient associated with x1 are

// group -specific; the coefficients on x2 and x3 are common to all groups

lm_rc ( y ∼ constant x1 | x2 x3);
✝ ✆

Example 3
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

// all rhs variables are associated with group -specific coefficients

model1 = lm_rc (y ∼ constant x1 x2 x3,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

store ( gamma_i , rc1_ , "model " = model1 );

// only the constant term and the coefficient associated with x1 are

// group -specific; the coefficients on x2 and x3 are common to all groups

model2 = lm_rc ( y ∼ constant x1 | x2 x3 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

store ( gamma_i , rc2_ , "model " = model2 );

pmp ( { model1 , model2 } );
✝ ✆
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4.5 Latent-class linear model

Mathematical representation

yi|c = x′
iβc + εi|c, εi|c ∼ N

(

0, 1
τc

)

, c = 0, 1, . . . , C − 1 (4.6)

� the model is estimated using N observations and involves C classes (counting starts at
zero)

� yi is the value of the dependent variable for observation i

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� βc is a K×1 vector of parameters for class c

� τc is the precision of the error term for class c: σ2
ε,c =

1
τc

� each observation, i, belongs to class c with prior probability (before seeing the data
{yi,xi}) πi,c. BayES supports two types of models:

1. unconditional prior class membership probabilities, in which case:

πi,c = πc ∀i, c

With this specification π ≡
[

π0 π1 · · · πC−1

]′
is a vector of parameters to be

estimated, with πc > 0 ∀c and
C−1
∑

c=0
πc = 1.

2. conditional prior class membership probabilities, in which case:

πi,c =
ez

′
iδc

C−1
∑

ℓ=0

ez
′
iδℓ

∀i, c

where:

– zi is an L× 1 vector that stores the values of the L determinants of class-
membership for observation i

– δ ≡
[

δ′1 δ′
2 · · · δ′C−1

]′
is an L ·(C−1)×1 vector of parameters to be estimated

In this specification class-membership probabilities are determined by a multinomial
Logit model, where, for identification purposes, δ0 is normalized to an L×1 vector
of zeros.

Priors

Parameter Probability density function Default hyperparameters
Common to both model types

βc p (βc) =
|Pc|

1/2

(2π)K/2 exp
{

− 1
2 (βc −mc)

′
Pc (βc −mc)

}

mc = 0K , Pc = 0.001 · IK
τc p (τc) =

b
aτc
τc

Γ(aτc )
τ
aτc−1
c e−τcbτc aτc = 0.001, bτc = 0.001

Model with unconditional class-membership probabilities

π p (π) = 1
B(a)

C−1
∏

c=0

πac−1
c a0 = a1 = · · · = aC−1 = 1

Model with conditional class-membership probabilities

δ p (δ) = |Pδ|
1/2

(2π)
L(C−1)

2

exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0L(C−1), Pδ =
0.001 · IL(C−1)
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Syntax

[<model name> = ] lm_lc( y ∼ x1 x2 ... xK [ | z1 z2 . . . zL] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� z1 z2 . . . zL is a list of the L variable names that enter the specification of the class-
membership probabilities (determinants of class membership), as they appear in the
dataset used for estimation; when a constant term is to be included in the model, this
must be requested explicitly; this list is optional and when provided the conditional
latent-class model is estimated; if not provided the unconditional model is estimated

•i If the dataset used for estimation has been previously declared as a panel dataset (typically,

by a call to the set_pd() function) then the model estimated is the one documented in the

following section. Each group in that model is restricted to belong to the same class for the

entire period for which it is observed.

The optional arguments for the latent-class linear model are:5

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"classes" specification of the number of classes to be used in the model (positive inte-
ger); the default value is 2

Hyperparameters

Common to both model types

"m" mean vector of the prior for each βc (K×1 vector); the default value is 0K

"P" precision matrix of the prior for each βc (K×K symmetric and positive-
definite matrix); the default value is 0.001·IK

"mj" mean vector of the prior for βj , j = 0, 1, . . . , C−1 (K×1 vector); this mean
overwrites the generic mean ("m") for class j only

"Pj" precision matrix of the prior for βj , j = 0, 1, . . . , C−1 (K×K symmetric
and positive-definite matrix); this precision matrix overwrites the generic
precision matrix ("P") for class j only

"a_tau" shape parameter of the prior for each τc (positive number); the default value
is 0.001

"b_tau" rate parameter of the prior for each τc (positive number); the default value
is 0.001

"a_tauj" shape parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
shape parameter overwrites the generic shape parameter ("a_tau") for class j
only

5Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"b_tauj" rate parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_tau") for class j only

Model with unconditional class-membership probabilities

"a" vector of concentration parameters for the Dirichlet prior on π (C×1 vector
with positive entries); the default value is a C×1 vector of ones

Model with conditional class-membership probabilities

"m_delta" mean vector of the prior for δ (L (C − 1)×1 vector); the default value is
0L(C−1)

"P_delta" precision matrix of the prior for δ (L (C−1)×1 symmetric and positive-definite
matrix); the default value is 0.001·IL(C−1)

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to both model types

βc variable_name vector of parameters associated with the independent variables
for class c

τc tau precision parameter of the error term for class c, εi|c

σε,c sigma_e standard deviation of the error term for class c: σε,c = 1/τ
1/2
c

Model with unconditional class-membership probabilities

πc pi prior class-membership probability for class c
Model with conditional class-membership probabilities

δc variable_name vector of parameters associated with the determinants of class
membership for class c; for identification purposes, these param-
eters for class 0 are normalized to zero

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a latent-class linear model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of βc and τc for c =
0, 1, . . . , C − 1, and, depending on the estimated model, π or δ.

cj$x1,. . .,cj$xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK, for j = 0, 1, . . . , C−1 (the names of these
vectors are the names of the variables that were included in the right-hand
side of the model, prepended by ‘c’, the class index and a dollar sign; in
this way ‘cj’ can be used to distinguish among parameters across different
classes)

cj$tau vectors containing the draws from the posterior of each τc, for j =
0, 1, . . . , C−1 (‘tau’ is prepended by ‘c’, the class index and the dollar sign;
in this way ‘cj’ can be used to distinguish among precision parameters in
different classes)

pi_j vectors containing the draws from the posterior of each πc, for j =
0, 1, . . . , C−1 (these vectors are available only after the estimation of the
model with unconditional class-membership probabilities)
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pi_j$z1,. . .,
pi_j$zL

vectors containing the draws from the posterior of the parameters asso-
ciated with variables z1,. . .,zL, for j = 1, . . . , C−16 (the names of these
vectors are the names of the variables that were included the z list, in
the right-hand side of the model, prepended by ‘pi_j’ and the dollar sign;
in this way ‘pi_j’ can be used to distinguish among parameters associ-
ated with variables with different roles in the model, for example the same
variable appearing in both x and z lists, as well as among parameters asso-
ciated with a variable in the z list, but corresponding to different classes;
these vectors are available only after the estimation of the model with
conditional class-membership probabilities)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

pi_i N ×C matrix that stores the expected values of the posterior class-
membership probabilities for each observation and for each of the C classes

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model
nclasses number of classes used during the estimation of the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

The latent-class linear model uses the store() function to associate the estimates of the
posterior class-membership probabilities (pi_i) with specific observations and store their values
in the dataset used for estimation. The generic syntax for a statement involving the store()

function after estimation of a latent-class linear model is:

store ( pi_i , <new variable name prefix> [, "model"=<model name>] );

This statement will generate C additional variables in the dataset used for estimation of the
model, with names constructed by appending the class index (0, 1, . . . , C−1) to the prefix
provided as the second argument to store().

The latent-class linear model with conditional class-membership probabilities uses the mfx()

function to calculate and report the marginal effects of the variables in the z list on the prior
class-membership probabilities that come from the multinomial-Logit part of the model. The
generic syntax for a statement involving the mfx() function after estimation of a latent-class
linear model with conditional class-membership probabilities is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the optional
arguments.

6Indexing starts at 1 because the parameters of the multinomial-Logit part of the model associated with
class 0 are normalized to zero for identification purposes.
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Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = 1;

lm_lc (y ∼ constant x1 x2);
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = 1;

myModel = lm_lc (y ∼ constant x1 x2 ,

"m0"=[2;0.6;0.3] , "P" = 10* eye (3,3) ,

"burnin "=10000 , "draws "=30000 , "thin"=2, "chains "=2, "classes "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

plot([ myModel .c0$x1 , myModel .c1$x1],

"title"="\beta2 for the two classes ");

plot([ myModel .pi_0 , myModel .pi_1],

"title"="Prior class -membership probabilities");
✝ ✆

Example 3
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = 1;

myModel = lm_lc (y ∼ constant x1 x2 | constant x3,

"m0"=[2;0.6;0.3] , "P" = 10* eye (3,3) ,

"burnin "=10000 , "draws "=30000 , "thin"=2, "chains "=2, "classes "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("model"=myModel );

plot([ myModel .c0$x1 , myModel .c1$x1],

"title"="\beta2 for the two classes ");

plot(myModel .pi_1$x3 ,

"title"="\delta2 for class 1");
✝ ✆
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4.6 Latent-class linear model with panel data

Mathematical representation

yit|c = x′
itβc + εit|c, εit|c ∼ N

(

0, 1
τc

)

, c = 0, 1, . . . , C − 1 (4.7)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� the model involves C classes (counting starts at zero) and each group, i, is restricted to
belong to the same class for all Ti observations

� yit is the value of the dependent variable for group i, observed in period t

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� βc is a K×1 vector of parameters for class c

� τc is the precision of the error term for class c: σ2
ε,c =

1
τc

� each group, i, belongs to class c with prior probability (before seeing the data {yit,xit}Ti

t=1)
πi,c. BayES supports two types of models:

1. unconditional prior class membership probabilities, in which case:

πi,c = πc ∀i, c

With this specification π ≡
[

π0 π1 · · · πC−1

]′
is a vector of parameters to be

estimated, with πc > 0 ∀c and
C−1
∑

c=0
πc = 1.

2. conditional prior class membership probabilities, in which case:

πi,c =
ez

′
iδc

C−1
∑

ℓ=0

ez
′
iδℓ

∀i, c

where:

– zi is an L× 1 vector that stores the values of the L determinants of class-
membership for group i; these variables vary by group only (not within group)

– δ ≡
[

δ′1 δ′
2 · · · δ′C−1

]′
is an L ·(C−1)×1 vector of parameters to be estimated

In this specification class-membership probabilities are determined by a multinomial
Logit model, where, for identification purposes, δ0 is normalized to an L×1 vector
of zeros.

Priors

Parameter Probability density function Default hyperparameters
Common to both model types

βc p (βc) =
|Pc|

1/2

(2π)K/2 exp
{

− 1
2 (βc −mc)

′
Pc (βc −mc)

}

mc = 0K , Pc = 0.001 · IK
τc p (τc) =

b
aτc
τc

Γ(aτc )
τ
aτc−1
c e−τcbτc aτc = 0.001, bτc = 0.001

Model with unconditional class-membership probabilities

π p (π) = 1
B(a)

C−1
∏

c=0
πac−1
c a0 = a1 = · · · = aC−1 = 1

Model with conditional class-membership probabilities

δ p (δ) = |Pδ|
1/2

(2π)
L(C−1)

2

exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0L(C−1), Pδ =
0.001 · IL(C−1)
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Syntax

[<model name> = ] lm_lc( y ∼ x1 x2 ... xK [ | z1 z2 . . . zL] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� z1 z2 . . . zL is a list of the L variable names that enter the specification of the class-
membership probabilities (determinants of class membership), as they appear in the
dataset used for estimation; when a constant term is to be included in the model, this
must be requested explicitly; this list is optional and when provided the conditional
latent-class model is estimated; if not provided the unconditional model is estimated; the
values of the variables in this list must be constant within each group

•i If the dataset used for estimation has not been previously declared as a panel dataset or

if this structure has been removed (by a call to the set_cs() function) then the model

estimated is the one documented in the preceding section. Different time observations from

the same group in that model are allowed to belong to different classes.

The optional arguments for the latent-class linear model with panel data are:7

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"classes" specification of the number of classes to be used in the model (positive inte-
ger); the default value is 2

Hyperparameters

Common to both model types

"m" mean vector of the prior for each βc (K×1 vector); the default value is 0K

"P" precision matrix of the prior for each βc (K×K symmetric and positive-
definite matrix); the default value is 0.001·IK

"mj" mean vector of the prior for βj , j = 0, 1, . . . , C−1 (K×1 vector); this mean
overwrites the generic mean ("m") for class j only

"Pj" precision matrix of the prior for βj , j = 0, 1, . . . , C−1 (K×K symmetric
and positive-definite matrix); this precision matrix overwrites the generic
precision matrix ("P") for class j only

"a_tau" shape parameter of the prior for each τc (positive number); the default value
is 0.001

"b_tau" rate parameter of the prior for each τc (positive number); the default value
is 0.001

"a_tauj" shape parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
shape parameter overwrites the generic shape parameter ("a_tau") for class j
only

7Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"b_tauj" rate parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_tau") for class j only

Model with unconditional class-membership probabilities

"a" vector of concentration parameters for the Dirichlet prior on π (C×1 vector
with positive entries); the default value is a C×1 vector of ones

Model with conditional class-membership probabilities

"m_delta" mean vector of the prior for δ (L (C − 1)×1 vector); the default value is
0L(C−1)

"P_delta" precision matrix of the prior for δ (L (C−1)×1 symmetric and positive-definite
matrix); the default value is 0.001·IL(C−1)

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to both model types

βc variable_name vector of parameters associated with the independent variables
for class c

τc tau precision parameter of the error term for class c, εit|c

σε,c sigma_e standard deviation of the error term for class c: σε,c = 1/τ
1/2
c

Model with unconditional class-membership probabilities

πc pi prior class-membership probability for class c
Model with conditional class-membership probabilities

δc variable_name vector of parameters associated with the determinants of class
membership for class c; for identification purposes, these param-
eters for class 0 are normalized to zero

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a latent-class linear model with panel data is
created, then the following results are saved in the model item and are accessible via the ‘.’
operator:

Samples a matrix containing the draws from the posterior of βc and τc for c =
0, 1, . . . , C − 1, and, depending on the estimated model, π or δ.

cj$x1,. . .,cj$xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK, for j = 0, 1, . . . , C−1 (the names of these
vectors are the names of the variables that were included in the right-hand
side of the model, prepended by ‘c’, the class index and a dollar sign; in
this way ‘cj’ can be used to distinguish among parameters across different
classes)

cj$tau vectors containing the draws from the posterior of each τc, for j =
0, 1, . . . , C−1 (‘tau’ is prepended by ‘c’, the class index and the dollar sign;
in this way ‘cj’ can be used to distinguish among precision parameters in
different classes)

pi_j vectors containing the draws from the posterior of each πc, for j =
0, 1, . . . , C−1 (these vectors are available only after the estimation of the
model with unconditional class-membership probabilities)
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pi_j$z1,. . .,
pi_j$zL

vectors containing the draws from the posterior of the parameters asso-
ciated with variables z1,. . .,zL, for j = 1, . . . , C−18 (the names of these
vectors are the names of the variables that were included the z list, in
the right-hand side of the model, prepended by ‘pi_j’ and the dollar sign;
in this way ‘pi_j’ can be used to distinguish among parameters associ-
ated with variables with different roles in the model, for example the same
variable appearing in both x and z lists, as well as among parameters asso-
ciated with a variable in the z list, but corresponding to different classes;
these vectors are available only after the estimation of the model with
conditional class-membership probabilities)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

pi_i N ×C matrix that stores the expected values of the posterior class-
membership probabilities for each group and for each of the C classes

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model
nclasses number of classes used during the estimation of the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

The latent-class linear model with panel data uses the store() function to associate the
estimates of the posterior class-membership probabilities (pi_i) with specific observations and
store their values in the dataset used for estimation. The generic syntax for a statement
involving the store() function after estimation of a latent-class linear model with panel data
is:

store ( pi_i , <new variable name prefix> [, "model"=<model name>] );

This statement will generate C additional variables in the dataset used for estimation of the
model, with names constructed by appending the class index (0, 1, . . . , C−1) to the prefix
provided as the second argument to store().

The latent-class linear model with panel data and conditional class-membership probabili-
ties uses the mfx() function to calculate and report the marginal effects of the variables in the
z list on the prior class-membership probabilities that come from the multinomial-Logit part
of the model. The generic syntax for a statement involving the mfx() function after estimation
of a latent-class linear model with panel data and conditional class-membership probabilities
is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the optional
arguments.

8Indexing starts at 1 because the parameters of the multinomial-Logit part of the model associated with
class 0 are normalized to zero for identification purposes.
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Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = 1;

set_pd ( year , id , "dataset " = myData );

lm_lc (y ∼ constant x1 x2);
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = 1;

set_pd ( year , id , "dataset " = myData );

myModel = lm_lc (y ∼ constant x1 x2 ,

"m0"=[2;0.6;0.3] , "P" = 10* eye (3,3) ,

"burnin "=10000 , "draws "=30000 , "thin"=2, "chains "=2, "classes "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

plot([ myModel .c0$x1 , myModel .c1$x1],

"title"="\beta2 for the two classes ");

plot([ myModel .pi_0 , myModel .pi_1],

"title"="Prior class -membership probabilities");
✝ ✆
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5.1 Simple stochastic frontier

Mathematical representation

yi = x′
iβ + vi ± ui, vi ∼ N

(

0, 1
τ

)

, ui ∼ D(θ) (5.1)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� τ is the precision of the noise component of the error term: σ2
v = 1

τ

� ui is the inefficiency component of the error term and it can have any non-negative
distribution, represented in the equation above by D (θ); BayES supports the following
distributions for ui:

– exponential: p (ui) = λe−λui

– half normal: p (ui) =
2φ1/2

(2π)1/2
exp

{

−φ
2u

2
i

}

– truncated normal: p (ui) =
φ1/2 exp{−φ

2 (ui−µ)2}
(2π)1/2Φ1/2(φ1/2µ)

– gamma: p (ui) =
λκ

Γ(κ)u
κ−1
i e−λui

– log-Normal: p (ui) =
φ1/2

(2π)1/2ui
exp

{

−φ
2 (log ui − µ)

2
}

•i When ui enters the specification with a plus sign then the model represents a cost frontier,

while when ui enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.

Priors

Parameter Probability density function Default hyperparameters
Common to all models

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

Exponential model

λ p (λ) =
b
aλ
λ

Γ(aλ)
λaλ−1e−λbλ aλ = 1, bλ = 0.15

Half normal model

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 7, bφ = 0.5

Truncated normal model

µ p (µ) =
t1/2µ

(2π)1/2
exp

{

− tµ
2 (µ−mµ)

2
}

mµ = 0, tµ = 1

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 5, bφ = 0.5

Gamma model

κ p (κ) =
baκ
κ

Γ(aκ)
κaκ−1e−κbκ aκ = 3, bκ = 2

λ p (λ) =
b
aλ
λ

Γ(aλ)
λaλ−1e−λbλ aλ = κ, bλ = 0.2

Log-normal model

µ p (µ) =
t1/2µ

(2π)1/2
exp

{

− tµ
2 (µ−mµ)

2
}

mµ = −1.5, tµ = 1

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 2, bφ = 1
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Syntax

[<model name> = ] sf( y ∼ x1 x2 . . . xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

The optional arguments for the simple stochastic frontier model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "exp"

� "hnorm"

� "tnorm"

� "gamma"

� "lognorm"

the default value is "exp"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

Hyperparameters

Common to all models

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
Exponential model

"a_lambda" shape parameter of the prior for λ (positive number); the default value is 1
"b_lambda" rate parameter of the prior for λ (positive number); the default value is 0.15
Half normal model

"a_phi" shape parameter of the prior for φ (positive number); the default value is 7
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.5
Truncated normal model

"m_mu" location parameter of the prior for µ (real number); the default value is 0
"t_mu" precision parameter of the prior for µ (positive number); the default value is

1
"a_phi" shape parameter of the prior for φ (positive number); the default value is 5
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.5
Gamma model

"a_kappa" shape parameter of the prior for κ (positive number); the default value is 3

1Optional arguments are always given in option-value pairs (eg. "chains"=3).



64 CHAPTER 5. STOCHASTIC FRONTIER MODELS

"b_kappa" rate parameter of the prior for κ (positive number); the default value is 2
"b_lambda" rate parameter of the prior for λ (positive number); the default value is 0.2
Log-normal model

"m_mu" location parameter of the prior for µ (real number); the default value is −1.5
"t_mu" precision parameter of the prior for µ (positive number); the default value is

1
"a_phi" shape parameter of the prior for φ (positive number); the default value is 2
"b_phi" rate parameter of the prior for φ (positive number); the default value is 1
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to all models

β variable_name vector of parameters associated with the independent variables
τ tau precision parameter of the noise component of the error term, vi
σv sigma_v standard deviation of the noise component of the error term, σv =

1/τ1/2

Exponential model

λ lambda rate parameter of the distribution of the inefficiency component
of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/λ. For the exponential model the standard deviation of
ui is equal to the scale parameter.

Half normal model

φ phi precision parameter of the distribution of the inefficiency compo-
nent of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/φ1/2. The standard deviation of ui for the half-normal

model can be obtained as σu

√

1− 2
π .

Truncated normal model

µ mu location parameter of the distribution of the inefficiency compo-
nent of the error term, ui

φ phi precision parameter of the distribution of the inefficiency compo-
nent of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the er-
ror term: σu = 1/φ1/2. The standard deviation of
ui for the truncated-normal model can be obtained as

σu

√

1− 2 µ
σu

φ
(

− µ
σu

)

− 4φ2
(

− µ
σu

)

.

Gamma model

κ kappa shape parameter of the distribution of the inefficiency component
of the error term, ui

λ lambda rate parameter of the distribution of the inefficiency component
of the error term, ui

θ theta scale parameter of the inefficiency component of the error term:
θ = 1/λ. The standard deviation of ui for the Gamma model can
be obtained as θ

√
κ.

table continues on next page
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table continued from previous page

Log-normal model

µ mu location parameter of the distribution of the inefficiency compo-
nent of the error term, ui

φ phi precision parameter of the distribution of the inefficiency compo-
nent of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/φ1/2. The standard deviation of ui for the log-normal

model can be obtained as
√

(

eσ
2
u − 1

)

e2µ+σ2
u .

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a simple stochastic frontier model is created, then
the following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and τ , and, depend-
ing on the estimated model, λ, µ, φ, κ

x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
lambda vector containing the draws from the posterior of λ (available after the

estimation of the exponential and Gamma models)
mu vector containing the draws from the posterior of µ (available after the

estimation of the truncated-normal and log-normal models)
phi vector containing the draws from the posterior of φ (available after the

estimation of the half-normal, truncated-normal and log-normal models)
kappa vector containing the draws from the posterior of κ (available after the

estimation of the Gamma model)
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

eff_i N × 1 vector that stores the expected values of the observation-specific
efficiency scores, E (e−ui); the values in this vector are not guaranteed to
be in the same order as the order in which the observations appear in the
dataset used for estimation; use the store() function to associate the values
in eff_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

The simple stochastic frontier model uses the store() function to associate the estimates
of the efficiency scores (eff_i) with specific observations and store their values in the dataset
used for estimation. The generic syntax for a statement involving the store() function after
estimation of a simple stochastic frontier model is:
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store ( eff_i , <new variable name> [, "model"=<model name>] );

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ");

myData .constant = ones(rows(myData ), 1);

sf( y ∼ constant x1 x2 x3 , "logML_CJ " = true );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ");

myData .constant = ones(rows(myData ), 1);

expSF = sf( y ∼ constant x1 x2 x3,

"a_lambda "=-log (0.8) , "b_lambda "=1.0,

"logML_CJ "=true );

hnSF = sf( y ∼ constant x1 x2 x3 ,

"udist" = "hnorm ",

"a_phi"=7.0, "b_phi "=0.5,

"logML_CJ "=true );

pmp ( { expSF , hnSF } );

pmp ( { expSF , hnSF }, "logML_CJ "=true);

store ( eff_i , eff_exp , "model "=expSF );

store ( eff_i , eff_hn , "model "=hnSF );

hist(myData .eff_exp ,

"title"="Efficiency scores from the exponential model",

"grid"="on");

hist(myData .eff_hn ,

"title"="Efficiency scores from the half -normal model",

"grid"="on");
✝ ✆
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5.2 Inefficiency-effects stochastic frontier

Mathematical representation

yi = x′
iβ + vi ± ui, vi ∼ N

(

0, 1
τ

)

, ui ∼ D(θ, zi) (5.2)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� zi is an L× 1 vector that stores the values of the L determinants of inefficiency for
observation i

� τ is the precision of the noise component of the error term: σ2
v = 1

τ

� ui is the inefficiency component of the error term and it can have any non-negative
distribution, represented in the equation above by D (θ, zi); BayES supports the following
distributions for ui:

– exponential: p (ui) = λie
−λiui , with λi = ez

′
iδ and δ being an L× 1 vector of

parameters to be estimated

– truncated normal: p (ui) =
φ1/2 exp{−φ

2 (ui−µi)
2}

(2π)1/2Φ1/2(φ1/2µi)
, with µi = z′iδ and δ being an L×1

vector of parameters and φ a scalar parameter to be estimated

•i When ui enters the specification with a plus sign then the model represents a cost frontier,

while when ui enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.

Priors

Parameter Probability density function Default hyperparameters
Common to all models

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β−mβ)

′
Pβ (β−mβ)

}

mβ = 0K , Pβ = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

Exponential model

δ p (δ) = |Pδ|
1/2

(2π)L/2 exp
{

− 1
2 (δ−mδ)

′
Pδ (δ−mδ)

}

mδ = 0L, Pδ = 0.01 · IL
Truncated normal model

δ p (δ) = |Pδ|
1/2

(2π)L/2 exp
{

− 1
2 (δ−mδ)

′
Pδ (δ−mδ)

}

mδ = 0L, Pδ = 0.01 · IL
φ p (φ) =

b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 4, bφ = 0.5

Syntax

[<model name> = ] sf( y ∼ x1 x2 . . . xK | z1 z2 . . . zL [, <options>] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly
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� z1 z2 . . . zL is a list of the L variable names that affect ui (determinants of inefficiency),
as they appear in the dataset used for estimation; when a constant term is to be included
in the model, this must be requested explicitly

The optional arguments for the inefficiency-effects stochastic frontier model are:2

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "exp" � "tnorm"

the default value is "exp"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

Hyperparameters

Common to all models

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
Exponential model

"m_delta" mean vector of the prior for δ (L×1 vector); the default value is 0L

"P_delta" precision matrix of the prior for δ (L×L symmetric and positive-definite
matrix); the default value is 0.01·IL

Truncated normal model

"m_delta" mean vector of the prior for δ (L×1 vector); the default value is 0L

"P_delta" precision matrix of the prior for δ (L×L symmetric and positive-definite
matrix); the default value is 0.01·IL

"a_phi" shape parameter of the prior for φ (positive number); the default value is 4
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.5
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

2Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Reported Parameters
Common to all models

β variable_name vector of parameters associated with the independent variables in
the x list

τ tau precision parameter of the noise component of the error term, vi
σv sigma_v standard deviation of the noise component of the error term, σv =

1/τ1/2

Exponential model

δ variable_name vector of parameters associated with the independent variables in
the z list

Truncated normal model

δ variable_name vector of parameters associated with the independent variables in
the z list

φ phi precision parameter of the distribution of the inefficiency compo-
nent of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/φ1/2.

Stored values and post-estimation analysis

If a left-hand-side id value is provided when an inefficiency-effects stochastic frontier model is
created, then the following results are saved in the model item and are accessible via the ‘.’
operator:

Samples a matrix containing the draws from the posterior of β and τ , and, depend-
ing on the estimated model, δ, or δ and φ

y$x1,. . .,y$xK vectors containing the draws from the posterior of the parameters asso-
ciated with variables x1,. . .,xK (the names of these vectors are the names
of the variables that were included in the right-hand side of the model,
prepended by y$, where y is the name of the dependent variable; this is
done so that the samples on the parameters associated with a variable that
appears in both x and z lists can be distinguished)

tau vector containing the draws from the posterior of τ
u$z1,. . .,u$zL vectors containing the draws from the posterior of the parameters associ-

ated with variables z1,. . .,zL (the names of these vectors are the names of
the variables that were included in the z list, in the right-hand side of the
model, prepended by u$; this is done so that the samples on the parame-
ters associated with a variable that appears in both x and z lists can be
distinguished)

phi vector containing the draws from the posterior of φ (available after the
estimation of the truncated-normal model)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

eff_i N × 1 vector that stores the expected values of the observation-specific
efficiency scores, E (e−ui); the values in this vector are not guaranteed to
be in the same order as the order in which the observations appear in the
dataset used for estimation; use the store() function to associate the values
in eff_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
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nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

The inefficiency-effects stochastic frontier model uses the store() function to associate the
estimates of the efficiency scores (eff_i) with specific observations and store their values in the
dataset used for estimation. The generic syntax for a statement involving the store() function
after estimation of an inefficiency-effects stochastic frontier model is:

store ( eff_i , <new variable name> [, "model"=<model name>] );

The inefficiency-effects stochastic frontier model uses the mfx() function to calculate and
report the marginal effects of the variables in the z list on the expected value of u and on
the expected value of the efficiency score (= e−u). The two types of marginal effects can be
requested by setting the "type" argument of the mfx() function equal to 1 or 2. The generic
syntax for a statement involving the mfx() function after estimation of an inefficiency-effects
stochastic frontier model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=2 [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculation of the marginal effects on E (u) and on E (e−u), respectively. The default value
of the "type" option is 1. See the general documentation of the mfx() function (section B.14)
for details on the other optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset3 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

sf( y ∼ constant x2 x3 x4 | constant z2 z3, "production "= fa l se );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset3 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

expSF = sf( y ∼ constant x2 x3 x4 | constant z2 z3 ,

"udist"="exp ", "production "= fa l se );

tnormSF = sf( y ∼ constant x2 x3 x4 | constant z2 z3 ,

"udist"="tnorm ", "production "= fa l se );

store ( eff_i , eff_exp , "model " = expSF );

store ( eff_i , eff_tnorm , "model " = tnormSF );

mfx ( "point "="mean", "model "=expSF , "type"=1 );

mfx ( "point "="mean", "model "=tnormSF , "type"=1 );

mfx ( "point "="mean", "model "=expSF , "type"=2 );

mfx ( "point "="mean", "model "=tnormSF , "type"=2 );

pmp ( { expSF , tnormSF } );
✝ ✆
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5.3 Random-effects stochastic frontier

Mathematical representation

yit = αi + x′
itβ + vit ± uit, vit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

, uit ∼ D(θ) (5.3)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� yit is the value of the dependent variable for group i, observed in period t

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� β is a K×1 vector of parameters

� τ is the precision of the noise component of the error term: σ2
v = 1

τ

� αi is the group-specific error term for group i

� ω is precision of the group-specific error term: σ2
α = 1

ω

� uit is the inefficiency component of the error term for group i in period t and it can
have any non-negative distribution, represented in the equation above by D (θ); BayES
supports the following distributions for uit:

– exponential: p (uit) = λe−λuit

– half normal: p (uit) =
2φ1/2

(2π)1/2
exp

{

−φ
2u

2
it

}

•i When uit enters the specification with a plus sign then the model represents a cost frontier,

while when uit enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.

•i The mean of the distribution of the αis is restricted to zero and, therefore, these are simply

group-specific errors terms. However, including a constant term in the set of independent

variables is valid and leads to a specification equivalent to one where the group effects are

draws from a normal distribution with mean equal to the parameter associated with the

constant term and precision ω.

•i No time dependence is imposed on the inefficiency component of the error term: each uit

is treated as an independent draw from D(θ). This specification is known as the “true

random effects” stochastic frontier model (Greene, 2004) .

Priors

Parameter Probability density function Default hyperparameters
Common to all models

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

ω p (ω) =
baω
ω

Γ(aω)ω
aω−1e−ωbω aω = 0.01, bω = 0.001

Exponential model

λ p (λ) =
b
aλ
λ

Γ(aλ)
λaλ−1e−λbλ aλ = 1, bλ = 0.15

Half normal model

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 7, bφ = 0.5
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Syntax

[<model name> = ] sf_re( y ∼ x1 x2 . . . xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i Before using the sf_re() function the dataset used for estimation must be declared as a

panel dataset using the set_pd() function (see section B.13).

△! BayES automatically drops from the sample used for estimation groups which are observed

only once. This is because for these groups the group effect (αi) cannot be distinguished

from the noise component of the error term (vit).

The optional arguments for the random-effects stochastic frontier model are:3

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "exp" � "hnorm"

the default value is "exp"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

Hyperparameters

Common to all models

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
"a_omega" shape parameter of the prior for ω (positive number); the default value is

0.01
"b_omega" rate parameter of the prior for ω (positive number); the default value is 0.001

3Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Exponential model

"a_lambda" shape parameter of the prior for λ (positive number); the default value is 1
"b_lambda" rate parameter of the prior for λ (positive number); the default value is 0.15
Half normal model

"a_phi" shape parameter of the prior for φ (positive number); the default value is 7
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.5
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory in alphabetical order

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to all models

β variable_name vector of parameters associated with the independent variables
τ tau precision parameter of the noise component of the error term, vi
ω omega precision parameter of the group-specific error term, αi

σv sigma_v standard deviation of the noise component of the error term, σv =
1/τ1/2

σα sigma_alpha standard deviation of the group-specific error term: σα = 1/ω1/2

Exponential model

λ lambda rate parameter of the distribution of the inefficiency component
of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/λ. For the exponential model the standard deviation of
ui is equal to the scale parameter.

Half normal model

φ phi precision parameter of the distribution of the inefficiency compo-
nent of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/φ1/2. The standard deviation of ui for the half-normal

model can be obtained as σu

√

1− 2
π .

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-effects stochastic frontier model is
created, then the following results are saved in the model item and are accessible via the ‘.’
operator:

Samples a matrix containing the draws from the posterior of β, τ and either λ
(exponential model) or φ (half-normal model)

x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
omega vector containing the draws from the posterior of ω
lambda vector containing the draws from the posterior of λ (available after the

estimation of the exponential model)
phi vector containing the draws from the posterior of φ (available after the

estimation of the half-normal model)
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
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logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-
marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

alpha_i N×1 vector that stores the group-specific errors; the values in this vector
are not guaranteed to be in the same order as the order in which the
groups appear in the dataset used for estimation; use the store() function
to associate the values in alpha_i with the observations in the dataset

eff_i

(

∑N
i=1 Ti

)

×1 vector that stores the expected values of the observation-

specific efficiency scores, E (e−uit); the values in this vector are not guaran-
teed to be in the same order as the order in which the observations appear
in the dataset used for estimation; use the store() function to associate
the values in eff_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

The random-effects stochastic frontier model uses the store() function to associate the group
effects (alpha_i) or the estimates of the efficiency scores (eff_i) with specific observations and
store their values in the dataset used for estimation. The generic syntax for a statement
involving the store() function after estimation of a random-effects stochastic frontier model
and for each of these two quantities is:

store ( alpha_i , <new variable name> [, "model"=<model name>] );

and:

store ( eff_i , <new variable name> [, "model"=<model name>] );

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

myModel = sf_re ( y ∼ constant x1 x2 x3 );
✝ ✆
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Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

exp_SFRE = sf_re( y ∼ constant x1 x2 x3, "logML_CJ " = true );

hnorm_SFRE = sf_re ( y ∼ constant x1 x2 x3 , "logML_CJ " = true,

"udist" = "hnorm " );

store ( alpha_i , re_exp , "model " = exp_SFRE );

store ( alpha_i , re_hnorm , "model " = hnorm_SFRE );

store ( eff_i , eff_exp , "model " = exp_SFRE );

store ( eff_i , eff_hnorm , "model " = hnorm_SFRE );

pmp ( { exp_SFRE , hnorm_SFRE } );

pmp ( { exp_SFRE , hnorm_SFRE }, "logML_CJ "=true );

hist(myData .eff_exp ,

"title"="Efficiency scores from the exponential model",

"grid"="on");

hist(myData .eff_hn ,

"title"="Efficiency scores from the half -normal model",

"grid"="on");
✝ ✆
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5.4 Random-coefficients stochastic frontier

Mathematical representation

yit = z′itγi + x′
itβ + vit ± uit, vit ∼ N

(

0, 1
τ

)

, γi ∼ N
(

γ̄,Ω−1
)

, uit ∼ D(θ) (5.4)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

and Ti could be equal to one for all i (cross-sectional data)

� yit is the value of the dependent variable for group i, observed in period t

� zit is a K×1 vector that stores the values of the K independent variables which are
associated with group-specific coefficients, for group i, observed in period t

� xit is an L×1 vector that stores the values of the L independent variables which are
associated with coefficients common to all groups, for group i, observed in period t (L
could be zero)

� γi is a K×1 vector of parameters associated with group i

� γ̄ is a K×1 vector of parameters that represents the mean of the γis

� Ω is a K×K precision matrix for the distribution of the γis

� β is an L×1 vector of parameters

� τ is the precision of the noise component of the error term: σ2
v = 1

τ

� uit is the inefficiency component of the error term for group i in period t and it can
have any non-negative distribution, represented in the equation above by D (θ); BayES
supports the following distributions for uit:

– exponential: p (uit) = λe−λuit

– half normal: p (uit) =
2φ1/2

(2π)1/2
exp

{

−φ
2u

2
it

}

•i When uit enters the specification with a plus sign then the model represents a cost frontier,

while when uit enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.

•i No time dependence is imposed on the inefficiency component of the error term: each uit

is treated as an independent draw from D (θ).

△!
Calculation of the log-marginal likelihood for the model is performed by integrating-out the

uits from the complete-data likelihood by simulation. BayES multiplies the number of draws

used for the estimation of the parameters by the maximum number of time observations

per group (maxi {Ti}) to determine the number of draws to be used for this integration.

However, approximation of an integral of dimension Ti for each group, i, by simulation may

be imprecise if Ti is large. Therefore, using a large number of iterations is equired to reduce

the Monte Carlo standard error associated with the value of the log-marginal likelihood.
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Priors

Parameter Probability density function Default hyperparameters
Common to all models

γ̄ p (γ̄) =
|Pγ |

1/2

(2π)K/2 exp
{

− 1
2 (γ̄ −mγ)

′
Pγ (γ̄ −mγ)

}

mγ = 0K , Pγ = 0.001 · IK

Ω p (Ω) = |Ω|
n−K−1

2 |V−1|n/2

2nK/2ΓK(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

n = K2, V = 100
K · IK

β p (β) =
|Pβ |

1/2

(2π)L/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0L, Pβ = 0.001 · IL
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

Exponential model

λ p (λ) =
b
aλ
λ

Γ(aλ)
λaλ−1e−λbλ aλ = 1, bλ = 0.15

Half normal model

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 7, bφ = 0.5

Syntax

[<model name> = ] sf_rc( y ∼ z1 z2 ... zK [| x1 x2 . . . xL ] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� z1 z2 . . . zK is a list of the names, as they appear in the dataset used for estimation,
of the independent variables which are associated with group-specific coefficients; when
a constant term is to be included in the set of group-specific coefficients this must be
requested explicitly

� x1 x2 . . . xL is is a list of the names, as they appear in the dataset used for estimation, of
the independent variables which are associated with coefficients common to all groups;
when a constant term is to be included in the set of common coefficients, this must be
requested explicitly

•i An independent variable could be included in either the x or the z variable list, depending

on whether the parameter associated with this variable is common to all groups or not.

However, including a variable in both lists would lead to exact multicollinearity and, in this

case, BayES will issue an error.

•i Before using the sf_rc() function the dataset used for estimation must be declared as a

panel dataset using the set_pd() function (see section B.13). In the case of cross-sectional

data, the dataset still needs to be declared as a panel, but the group-id variable could be

constructed as a list of unique integers using, for example, the range() function.

△! For groups observed only once, a group-specific parameter associated with a constant term

cannot be distinguished from the error term (vit). Thus, a warning is produced when a

constant term is included in the z list and the dataset contains at least one group which is

observed only once.

The optional arguments for the random-coefficients stochastic frontier model are:4

4Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "exp" � "hnorm"

the default value is "exp"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

Hyperparameters

Common to all models

"m_gamma" mean vector of the prior for γ̄ (K×1 vector); the default value is 0K

"P_gamma" precision matrix of the prior for γ̄ (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"V" scale matrix of the prior for Ω (K×K symmetric and positive-definite matrix);
the default value is 100

K ·IK
"n" degrees-of-freedom parameter of the prior for Ω (real number greater than or

equal to K); the default value is K2

"m_beta" mean vector of the prior for β (L×1 vector); the default value is 0L

"P_beta" precision matrix of the prior for β (L×L symmetric and positive-definite
matrix); the default value is 0.001·IL

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
Exponential model

"a_lambda" shape parameter of the prior for λ (positive number); the default value is 1
"b_lambda" rate parameter of the prior for λ (positive number); the default value is 0.15
Half normal model

"a_phi" shape parameter of the prior for φ (positive number); the default value is 7
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.5
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to all models

γ̄ variable_name vector of parameters associated with the independent variables in
the z list; these are the means of the group-specific parameters

β variable_name vector of parameters associated with the independent variables in
the x list

table continues on next page
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table continued from previous page

τ tau precision parameter of the noise component of the error term, vi
σv sigma_v standard deviation of the noise component of the error term, σv =

1/τ1/2

Exponential model

λ lambda rate parameter of the distribution of the inefficiency component
of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/λ. For the exponential model the standard deviation of
ui is equal to the scale parameter.

Half normal model

φ phi precision parameter of the distribution of the inefficiency compo-
nent of the error term, ui

σu sigma_u scale parameter of the inefficiency component of the error term:
σu = 1/φ1/2. The standard deviation of ui for the half-normal

model can be obtained as σu

√

1− 2
π .

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-coefficients stochastic frontier model is
created, then the following results are saved in the model item and are accessible via the ‘.’
operator:

Samples a matrix containing the draws from the posterior of γ̄, β, τ , the unique
elements of Ω and either λ (exponential model) or φ (half-normal model)

z1,. . .,zK vectors containing the draws from the posterior of the mean of the group-
specific coefficients (γ̄s) associated with variables z1,. . .,zK (the names of
these vectors are the names of the variables that were included in the
right-hand side of the model)

x1,. . .,xL vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xL (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
lambda vector containing the draws from the posterior of λ (available after the

estimation of the exponential model)
phi vector containing the draws from the posterior of φ (available after the

estimation of the half-normal model)
Omega_i_j vectors containing the draws from the posterior of the unique elements of

Ω; because Ω is symmetric, only (K−1)K
2 +K of its elements are stored

(instead of all K2 elements); i and j index the row and column of Ω,
respectively, at which the corresponding element is located

Omega K×K matrix that stores the posterior mean of Ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

gamma_i N×K matrix that stores the group-specific coefficients for the variables
in the z list; the values in this matrix are not guaranteed to be in the
same order as the order in which the groups appear in the dataset used
for estimation; use the store() function to associate the values in gamma_i

with the observations in the dataset
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eff_i

(

∑N
i=1 Ti

)

×1 vector that stores the expected values of the observation-

specific efficiency scores, E (e−uit); the values in this vector are not guaran-
teed to be in the same order as the order in which the observations appear
in the dataset used for estimation; use the store() function to associate
the values in eff_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

The random-coefficients stochastic frontier model uses the store() function to associate the
group-specific parameters (gamma_i) or the estimates of the efficiency scores (eff_i) with specific
observations and store their values in the dataset used for estimation. The generic syntax for
a statement involving the store() function after estimation of a random-coefficients stochastic
frontier model and for each of these two quantities is:

store ( gamma_i , <new variable name prefix> [, "model"=<model name>] );

and:

store ( eff_i , <new variable name> [, "model"=<model name>] );

The first statement will generate K additional variables in the dataset used for estimation
of the random-coefficients model, with names constructed by prepending the prefix provided
as the second argument to store() to the names of the variables which are associated with
group-specific coefficients. The second statement will generate one additional variable in the
dataset used for estimation of the model and its name will be the one provided as the second
argument to store().

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

// all rhs variables are associated with group -specific coefficients

sf_rc ( y ∼ constant x1 x2 x3);
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

// only the constant term and the coefficient associated with x1 are

// group -specific; the coefficients on x2 and x3 are common to all groups

sf_rc ( y ∼ constant x1 | x2 x3);
✝ ✆
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Example 3
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

// all rhs variables are associated with group -specific coefficients

model1 = sf_rc (y ∼ constant x1 x2 x3, "udist "="hnorm",

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

store ( gamma_i , rc1_ , "model " = model1 );

// only the constant term and the coefficient associated with x1 are

// group -specific; the coefficients on x2 and x3 are common to all groups

model2 = lm_rc ( y ∼ constant x1 | x2 x3 , "udist "="hnorm ",

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

store ( gamma_i , rc2_ , "model " = model2 );

pmp ( { model1 , model2 } );
✝ ✆
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5.5 Latent-class stochastic frontier

Mathematical representation

yi|c = x′
iβc + vi|c ± ui|c, vi|c ∼ N

(

0, 1
τc

)

, ui|c ∼ D(θ) , c = 0, 1, . . . , C − 1 (5.5)

� the model is estimated using N observations and involves C classes (counting starts at
zero)

� yi is the value of the dependent variable for observation i

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� βc is a K×1 vector of parameters for class c

� τc is the precision of the noise component of the error term for class c: σ2
v,c =

1
τc

� uit is the inefficiency component of the error term for group i in period t and it can
have any non-negative distribution, represented in the equation above by D (θ); BayES
supports the following distributions for uit:

– exponential: p
(

ui|c

)

= λce
−λcui|c

– half normal: p
(

ui|c

)

=
2φ1/2

c

(2π)1/2
exp

{

−φc

2 u2
i|c

}

� each observation, i, belongs to class c with prior probability (before seeing the data
{yi,xi}) πi,c. BayES supports two types of models:

1. unconditional prior class membership probabilities, in which case:

πi,c = πc ∀i, c

With this specification π ≡
[

π0 π1 · · · πC−1

]′
is a vector of parameters to be

estimated, with πc > 0 ∀c and
C−1
∑

c=0

πc = 1.

2. conditional prior class membership probabilities, in which case:

πi,c =
ez

′
iδc

C−1
∑

ℓ=0

ez
′
iδℓ

∀i, c

where:

– zi is an L× 1 vector that stores the values of the L determinants of class-
membership for observation i

– δ ≡
[

δ′1 δ′
2 · · · δ′C−1

]′
is an L ·(C−1)×1 vector of parameters to be estimated

In this specification class-membership probabilities are determined by a multinomial
Logit model, where, for identification purposes, δ0 is normalized to an L×1 vector
of zeros.

•i When ui|c enters the specification with a plus sign then the model represents a cost frontier,

while when ui|c enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.
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Priors

Parameter Probability density function Default hyperparameters
Common to all model types

βc p (βc) =
|Pc|

1/2

(2π)K/2 exp
{

− 1
2 (βc −mc)

′
Pc (βc −mc)

}

mc = 0K , Pc = 0.001 · IK
τc p (τc) =

b
aτc
τc

Γ(aτc )
τ
aτc−1
c e−τcbτc aτc = 0.001, bτc = 0.001

Exponential model

λc p (λc) =
b
aλc
λc

Γ(aλc )
λ
aλc−1
c e−λcbλc aλc = 1, bλc = 0.15

Half normal model

φc p (φc) =
b
aφc
φc

Γ(aφc )
φ
aφc−1
c e−φcbφc aφc = 7, bφc = 0.5

Model with unconditional class-membership probabilities

π p (π) = 1
B(a)

C−1
∏

c=0
πac−1
c a0 = a1 = · · · = aC−1 = 1

Model with conditional class-membership probabilities

δ p (δ) = |Pδ|
1/2

(2π)
L(C−1)

2

exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0L(C−1), Pδ =
0.001 · IL(C−1)

Syntax

[<model name> = ] sf_lc( y ∼ x1 x2 ... xK [ | z1 z2 . . . zL] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� z1 z2 . . . zL is a list of the L variable names that enter the specification of the class-
membership probabilities (determinants of class membership), as they appear in the
dataset used for estimation; when a constant term is to be included in the model, this
must be requested explicitly; this list is optional and when provided the conditional
latent-class model is estimated; if not provided the unconditional model is estimated

•i If the dataset used for estimation has been previously declared as a panel dataset (typically,

by a call to the set_pd() function) then the model estimated is the one documented in the

following section. Each group in that model is restricted to belong to the same class for the

entire period for which it is observed.

The optional arguments for the latent-class stochastic frontier model are:5

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42

5Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "exp" � "hnorm"

the default value is "exp"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

"classes" specification of the number of classes to be used in the model (positive inte-
ger); the default value is 2

Hyperparameters

Common to all model types

"m" mean vector of the prior for each βc (K×1 vector); the default value is 0K

"P" precision matrix of the prior for each βc (K×K symmetric and positive-
definite matrix); the default value is 0.001·IK

"mj" mean vector of the prior for βj , j = 0, 1, . . . , C−1 (K×1 vector); this mean
overwrites the generic mean ("m") for class j only

"Pj" precision matrix of the prior for βj , j = 0, 1, . . . , C−1 (K×K symmetric
and positive-definite matrix); this precision matrix overwrites the generic
precision matrix ("P") for class j only

"a_tau" shape parameter of the prior for each τc (positive number); the default value
is 0.001

"b_tau" rate parameter of the prior for each τc (positive number); the default value
is 0.001

"a_tauj" shape parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
shape parameter overwrites the generic shape parameter ("a_tau") for class j
only

"b_tauj" rate parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_tau") for class j only

Exponential model

"a_lambda" shape parameter of the prior for each λc (positive number); the default value
is 1

"b_lambda" rate parameter of the prior for each λc (positive number); the default value
is 0.15

"a_lambdaj" shape parameter of the prior for λj , j = 0, 1, . . . , C−1 (positive number);
this shape parameter overwrites the generic shape parameter ("a_lambda") for
class j only

"b_lambdaj" rate parameter of the prior for λj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_lambda") for class j
only

Half normal model

"a_phi" shape parameter of the prior for each φc (positive number); the default value
is 7

"b_phi" rate parameter of the prior for each φc (positive number); the default value
is 0.5

"a_phij" shape parameter of the prior for φj , j = 0, 1, . . . , C−1 (positive number); this
shape parameter overwrites the generic shape parameter ("a_phi") for class j
only

"b_phij" rate parameter of the prior for φj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_phi") for class j only
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Model with unconditional class-membership probabilities

"a" vector of concentration parameters for the Dirichlet prior on π (C×1 vector
with positive entries); the default value is a C×1 vector of ones

Model with conditional class-membership probabilities

"m_delta" mean vector of the prior for δ (L (C − 1)×1 vector); the default value is
0L(C−1)

"P_delta" precision matrix of the prior for δ (L (C−1)×1 symmetric and positive-definite
matrix); the default value is 0.001·IL(C−1)

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to all model types

βc variable_name vector of parameters associated with the independent variables
for class c

τc tau precision parameter of the noise component of the error term for
class c, vi|c

σv,c sigma_v standard deviation of the noise component of the error term for

class c: σv,c = 1/τ
1/2
c

Exponential model

λc lambda rate parameter of the distribution of the inefficiency component
of the error term for class c: ui|c

σu,c sigma_u scale parameter of the inefficiency component of the error term
for class c: σu,c = 1/λc. For the exponential model the standard
deviation of ui|c is equal to the scale parameter.

Half normal model

φc phi precision parameter of the distribution of the inefficiency compo-
nent of the error term for class c, ui|c

σu,c sigma_u scale parameter of the inefficiency component of the error term

for class c: σu,c = 1/φ
1/2
c . The standard deviation of ui|c for the

half-normal model can be obtained as σu,c

√

1− 2
π .

Model with unconditional class-membership probabilities

πc pi prior class-membership probability for class c
Model with conditional class-membership probabilities

δc variable_name vector of parameters associated with the determinants of class
membership for class c; for identification purposes, these param-
eters for class 0 are normalized to zero

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a latent-class stochastic frontier model is created,
then the following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of βc and τc for c =
0, 1, . . . , C − 1, and, depending on the estimated model, either λ (expo-
nential model) or φ (half-normal model) and either π or δ.
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cj$x1,. . .,cj$xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK, for j = 0, 1, . . . , C−1 (the names of these
vectors are the names of the variables that were included in the right-hand
side of the model, prepended by ‘c’, the class index and a dollar sign; in
this way ‘cj’ can be used to distinguish among parameters across different
classes)

cj$tau vectors containing the draws from the posterior of each τc, for j =
0, 1, . . . , C−1 (‘tau’ is prepended by ‘c’, the class index and the dollar sign;
in this way ‘cj’ can be used to distinguish among precision parameters in
different classes)

cj$lambda vector containing the draws from the posterior of λc, for j = 0, 1, . . . , C−1
(‘lambda’ is prepended by ‘c’, the class index and the dollar sign; in this
way ‘cj’ can be used to distinguish among precision parameters in different
classes; available after the estimation of the exponential model)

cj$phi vector containing the draws from the posterior of φc, for j = 0, 1, . . . , C−1
(‘phi’ is prepended by ‘c’, the class index and the dollar sign; in this way
‘cj’ can be used to distinguish among precision parameters in different
classes; available after the estimation of the half-normal model)

pi_j vectors containing the draws from the posterior of each πc, for j =
0, 1, . . . , C−1 (these vectors are available only after the estimation of the
model with unconditional class-membership probabilities)

pi_j$z1,. . .,
pi_j$zL

vectors containing the draws from the posterior of the parameters asso-
ciated with variables z1,. . .,zL, for j = 1, . . . , C−16 (the names of these
vectors are the names of the variables that were included the z list, in
the right-hand side of the model, prepended by ‘pi_j’ and the dollar sign;
in this way ‘pi_j’ can be used to distinguish among parameters associ-
ated with variables with different roles in the model, for example the same
variable appearing in both x and z lists, as well as among parameters asso-
ciated with a variable in the z list, but corresponding to different classes;
these vectors are available only after the estimation of the model with
conditional class-membership probabilities)

eff_i N × 1 vector that stores the expected values of the observation-specific
efficiency scores, E (e−ui); the values in this vector are not guaranteed to
be in the same order as the order in which the observations appear in the
dataset used for estimation; use the store() function to associate the values
in eff_i with the observations in the dataset

pi_i N ×C matrix that stores the expected values of the posterior class-
membership probabilities for each observation and for each of the C classes

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model
nclasses number of classes used during the estimation of the model

6Indexing starts at 1 because the parameters of the multinomial-Logit part of the model associated with
class 0 are normalized to zero for identification purposes.
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Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

The latent-class stochastic frontier model uses the store() function to associate the estimates
of the efficiency scores (eff_i) or the estimates of the posterior class-membership probabilities
(pi_i) with specific observations and store their values in the dataset used for estimation. The
generic syntax for a statement involving the store() function after estimation of a latent-class
stochastic frontier model and for each of these two quantities is:

store ( eff_i , <new variable name> [, "model"=<model name>] );

and:

store ( pi_i , <new variable name prefix> [, "model"=<model name>] );

The first statement will generate one additional variable in the dataset used for estimation
of the model and its name will be the one provided as the second argument to store(). This
second statement will generate C additional variables in the dataset used for estimation of
the model, with names constructed by appending the class index (0, 1, . . . , C−1) to the prefix
provided as the second argument to store().

The latent-class stochastic frontier model with conditional class-membership probabilities
uses the mfx() function to calculate and report the marginal effects of the variables in the z list
on the prior class-membership probabilities that come from the multinomial-Logit part of the
model. The generic syntax for a statement involving the mfx() function after estimation of a
latent-class stochastic frontier model with conditional class-membership probabilities is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the optional
arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = ones(rows(myData ), 1);

sf_lc (y ∼ constant x1 x2);
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = sf_lc (y ∼ constant x1 x2 , "udist "="hnorm ",

"m0"=[2;0.6;0.3] , "P" = 10* eye (3,3) ,

"burnin "=10000 , "draws "=30000 , "thin"=2, "chains "=2, "classes "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

plot([ myModel .c0$x1 , myModel .c1$x1],

"title"="\beta2 for the two classes ");

plot([ myModel .pi_0 , myModel .pi_1],

"title"="Prior class -membership probabilities");
✝ ✆
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Example 3
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = sf_lc (y ∼ constant x1 x2 | constant x3, "udist "="hnorm",

"m0"=[2;0.6;0.3] , "P" = 10* eye (3,3) ,

"burnin "=10000 , "draws "=30000 , "thin"=2, "chains "=2, "classes "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("model"=myModel );

plot([ myModel .c0$x1 , myModel .c1$x1],

"title"="\beta2 for the two classes ");

plot(myModel .pi_1$x3 ,

"title"="\delta2 for class 1");
✝ ✆



5.6. LATENT-CLASS STOCHASTIC FRONTIER MODEL WITH PANEL DATA 89

5.6 Latent-class stochastic frontier model with panel data

Mathematical representation

yit|c = x′
itβc+vit|c±uit|c, vit|c ∼ N

(

0, 1
τc

)

, uit|c ∼ D(θ) , c = 0, 1, . . . , C−1 (5.6)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� the model involves C classes (counting starts at zero) and each group, i, is restricted to
belong to the same class for all Ti observations

� yit is the value of the dependent variable for group i, observed in period t

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� βc is a K×1 vector of parameters for class c

� τc is the precision of the noise component of the error term for class c: σ2
v,c =

1
τc

� uit is the inefficiency component of the error term for group i in period t and it can
have any non-negative distribution, represented in the equation above by D (θ); BayES
supports the following distributions for uit:

– exponential: p
(

uit|c

)

= λce
−λuit|c

– half normal: p
(

uit|c

)

=
2φ1/2

c

(2π)1/2
exp

{

−φc

2 u2
it|c

}

� each group, i, belongs to class c with prior probability (before seeing the data {yit,xit}Ti

t=1)
πi,c. BayES supports two types of models:

1. unconditional prior class membership probabilities, in which case:

πi,c = πc ∀i, c

With this specification π ≡
[

π0 π1 · · · πC−1

]′
is a vector of parameters to be

estimated, with πc > 0 ∀c and
C−1
∑

c=0
πc = 1.

2. conditional prior class membership probabilities, in which case:

πi,c =
ez

′
iδc

C−1
∑

ℓ=0

ez
′
iδℓ

∀i, c

where:

– zi is an L× 1 vector that stores the values of the L determinants of class-
membership for group i; these variables vary by group only (not within group)

– δ ≡
[

δ′1 δ′
2 · · · δ′C−1

]′
is an L ·(C−1)×1 vector of parameters to be estimated

In this specification class-membership probabilities are determined by a multinomial
Logit model, where, for identification purposes, δ0 is normalized to an L×1 vector
of zeros.

•i When uit enters the specification with a plus sign then the model represents a cost frontier,

while when uit enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.
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•i No time dependence is imposed on the inefficiency component of the error term: each uit

is treated as an independent draw from D(θ). This specification is known as the “true

random effects” stochastic frontier model (Greene, 2004) .

Priors

Parameter Probability density function Default hyperparameters
Common to all model types

βc p (βc) =
|Pc|

1/2

(2π)K/2 exp
{

− 1
2 (βc −mc)

′
Pc (βc −mc)

}

mc = 0K , Pc = 0.001 · IK
τc p (τc) =

b
aτc
τc

Γ(aτc )
τ
aτc−1
c e−τcbτc aτc = 0.001, bτc = 0.001

Exponential model

λc p (λc) =
b
aλc
λc

Γ(aλc )
λ
aλc−1
c e−λcbλc aλc = 1, bλc = 0.15

Half normal model

φc p (φc) =
b
aφc
φc

Γ(aφc )
φ
aφc−1
c e−φcbφc aφc = 7, bφc = 0.5

Model with unconditional class-membership probabilities

π p (π) = 1
B(a)

C−1
∏

c=0

πac−1
c a0 = a1 = · · · = aC−1 = 1

Model with conditional class-membership probabilities

δ p (δ) = |Pδ|
1/2

(2π)
L(C−1)

2

exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0L(C−1), Pδ =
0.001 · IL(C−1)

Syntax

[<model name> = ] sf_lc( y ∼ x1 x2 ... xK [ | z1 z2 . . . zL] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� z1 z2 . . . zL is a list of the L variable names that enter the specification of the class-
membership probabilities (determinants of class membership), as they appear in the
dataset used for estimation; when a constant term is to be included in the model, this
must be requested explicitly; this list is optional and when provided the conditional
latent-class model is estimated; if not provided the unconditional model is estimated; the
values of the variables in this list must be constant within each group

•i If the dataset used for estimation has not been previously declared as a panel dataset or

if this structure has been removed (by a call to the set_cs() function) then the model

estimated is the one documented in the preceding section. Different time observations from

the same group in that model are allowed to belong to different classes.

The optional arguments for the latent-class stochastic frontier model with panel data are:7

7Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "exp" � "hnorm"

the default value is "exp"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

"classes" specification of the number of classes to be used in the model (positive inte-
ger); the default value is 2

Hyperparameters

Common to all model types

"m" mean vector of the prior for each βc (K×1 vector); the default value is 0K

"P" precision matrix of the prior for each βc (K×K symmetric and positive-
definite matrix); the default value is 0.001·IK

"mj" mean vector of the prior for βj , j = 0, 1, . . . , C−1 (K×1 vector); this mean
overwrites the generic mean ("m") for class j only

"Pj" precision matrix of the prior for βj , j = 0, 1, . . . , C−1 (K×K symmetric
and positive-definite matrix); this precision matrix overwrites the generic
precision matrix ("P") for class j only

"a_tau" shape parameter of the prior for each τc (positive number); the default value
is 0.001

"b_tau" rate parameter of the prior for each τc (positive number); the default value
is 0.001

"a_tauj" shape parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
shape parameter overwrites the generic shape parameter ("a_tau") for class j
only

"b_tauj" rate parameter of the prior for τj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_tau") for class j only

Exponential model

"a_lambda" shape parameter of the prior for each λc (positive number); the default value
is 1

"b_lambda" rate parameter of the prior for each λc (positive number); the default value
is 0.15

"a_lambdaj" shape parameter of the prior for λj , j = 0, 1, . . . , C−1 (positive number);
this shape parameter overwrites the generic shape parameter ("a_lambda") for
class j only

"b_lambdaj" rate parameter of the prior for λj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_lambda") for class j
only

Half normal model

"a_phi" shape parameter of the prior for each φc (positive number); the default value
is 7
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"b_phi" rate parameter of the prior for each φc (positive number); the default value
is 0.5

"a_phij" shape parameter of the prior for φj , j = 0, 1, . . . , C−1 (positive number); this
shape parameter overwrites the generic shape parameter ("a_phi") for class j
only

"b_phij" rate parameter of the prior for φj , j = 0, 1, . . . , C−1 (positive number); this
rate parameter overwrites the generic rate parameter ("b_phi") for class j only

Model with unconditional class-membership probabilities

"a" vector of concentration parameters for the Dirichlet prior on π (C×1 vector
with positive entries); the default value is a C×1 vector of ones

Model with conditional class-membership probabilities

"m_delta" mean vector of the prior for δ (L (C − 1)×1 vector); the default value is
0L(C−1)

"P_delta" precision matrix of the prior for δ (L (C−1)×1 symmetric and positive-definite
matrix); the default value is 0.001·IL(C−1)

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
Common to all model types

βc variable_name vector of parameters associated with the independent variables
for class c

τc tau precision parameter of the noise component of the error term for
class c, vit|c

σv,c sigma_v standard deviation of the noise component of the error term for

class c: σv,c = 1/τ
1/2
c

Exponential model

λc lambda rate parameter of the distribution of the inefficiency component
of the error term for class c, uit|c

σu,c sigma_u scale parameter of the inefficiency component of the error term
for class c: σu,c = 1/λc. For the exponential model the standard
deviation of uit|c is equal to the scale parameter.

Half normal model

φc phi precision parameter of the distribution of the inefficiency compo-
nent of the error term for class c, uit|c

σu,c sigma_u scale parameter of the inefficiency component of the error term

for class c: σu,c = 1/φ
1/2
c . The standard deviation of uit|c for the

half-normal model can be obtained as σu,c

√

1− 2
π .

Model with unconditional class-membership probabilities

πc pi prior class-membership probability for class c
Model with conditional class-membership probabilities

δc variable_name vector of parameters associated with the determinants of class
membership for class c; for identification purposes, these param-
eters for class 0 are normalized to zero
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Stored values and post-estimation analysis

If a left-hand-side id value is provided when a latent-class stochastic frontier model with panel
data is created, then the following results are saved in the model item and are accessible via
the ‘.’ operator:

Samples a matrix containing the draws from the posterior of βc and τc for c =
0, 1, . . . , C − 1, and, depending on the estimated model, either λ (expo-
nential model) or φ (half-normal model) and either π or δ.

cj$x1,. . .,cj$xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK, for j = 0, 1, . . . , C−1 (the names of these
vectors are the names of the variables that were included in the right-hand
side of the model, prepended by ‘c’, the class index and a dollar sign; in
this way ‘cj’ can be used to distinguish among parameters across different
classes)

cj$tau vectors containing the draws from the posterior of each τc, for j =
0, 1, . . . , C−1 (‘tau’ is prepended by ‘c’, the class index and the dollar sign;
in this way ‘cj’ can be used to distinguish among precision parameters in
different classes)

cj$tau vectors containing the draws from the posterior of each τc, for j =
0, 1, . . . , C−1 (‘tau’ is prepended by ‘c’, the class index and the dollar sign;
in this way ‘cj’ can be used to distinguish among precision parameters in
different classes)

cj$lambda vector containing the draws from the posterior of λc, for j = 0, 1, . . . , C−1
(‘lambda’ is prepended by ‘c’, the class index and the dollar sign; in this
way ‘cj’ can be used to distinguish among precision parameters in different
classes; available after the estimation of the exponential model)

cj$phi vector containing the draws from the posterior of φc, for j = 0, 1, . . . , C−1
(‘phi’ is prepended by ‘c’, the class index and the dollar sign; in this way
‘cj’ can be used to distinguish among precision parameters in different
classes; available after the estimation of the half-normal model)

eff_i

(

∑N
i=1 Ti

)

×1 vector that stores the expected values of the observation-

specific efficiency scores, E (e−uit); the values in this vector are not guaran-
teed to be in the same order as the order in which the observations appear
in the dataset used for estimation; use the store() function to associate
the values in eff_i with the observations in the dataset

pi_j vectors containing the draws from the posterior of each πc, for j =
0, 1, . . . , C−1 (these vectors are available only after the estimation of the
model with unconditional class-membership probabilities)

pi_j$z1,. . .,
pi_j$zL

vectors containing the draws from the posterior of the parameters asso-
ciated with variables z1,. . .,zL, for j = 1, . . . , C−18 (the names of these
vectors are the names of the variables that were included the z list, in
the right-hand side of the model, prepended by ‘pi_j’ and the dollar sign;
in this way ‘pi_j’ can be used to distinguish among parameters associ-
ated with variables with different roles in the model, for example the same
variable appearing in both x and z lists, as well as among parameters asso-
ciated with a variable in the z list, but corresponding to different classes;
these vectors are available only after the estimation of the model with
conditional class-membership probabilities)

pi_i N ×C matrix that stores the expected values of the posterior class-
membership probabilities for each group and for each of the C classes

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood

8Indexing starts at 1 because the parameters of the multinomial-Logit part of the model associated with
class 0 are normalized to zero for identification purposes.
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logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-
marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model
nclasses number of classes used during the estimation of the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

The latent-class stochastic frontier model with panel data uses the store() function to
associate the estimates of the efficiency scores (eff_i) or the estimates of the posterior class-
membership probabilities (pi_i) with specific observations and store their values in the dataset
used for estimation. The generic syntax for a statement involving the store() function after
estimation of a latent-class stochastic frontier model and for each of these two quantities is:

store ( eff_i , <new variable name> [, "model"=<model name>] );

and:

store ( pi_i , <new variable name prefix> [, "model"=<model name>] );

The first statement will generate one additional variable in the dataset used for estimation
of the model and its name will be the one provided as the second argument to store(). This
second statement will generate C additional variables in the dataset used for estimation of
the model, with names constructed by appending the class index (0, 1, . . . , C−1) to the prefix
provided as the second argument to store().

The latent-class stochastic frontier model with panel data and conditional class-membership
probabilities uses the mfx() function to calculate and report the marginal effects of the variables
in the z list on the prior class-membership probabilities that come from the multinomial-Logit
part of the model. The generic syntax for a statement involving the mfx() function after
estimation of a latent-class linear model with panel data and conditional class-membership
probabilities is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the optional
arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

sf_lc (y ∼ constant x1 x2);
✝ ✆
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Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset2 .csv ");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

myModel = sf_lc (y ∼ constant x1 x2 , "udist "="hnorm ",

"m0"=[2;0.6;0.3] , "P" = 10* eye (3,3) ,

"burnin "=10000 , "draws "=30000 , "thin"=2, "chains "=2, "classes "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

plot([ myModel .c0$x1 , myModel .c1$x1],

"title"="\beta2 for the two classes ");

plot([ myModel .pi_0 , myModel .pi_1],

"title"="Prior class -membership probabilities");
✝ ✆
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5.7 Dynamic stochastic frontier

Mathematical representation

yit = x′
itβ + vit ± uit, vit ∼ N

(

0, 1
τ

)

, (5.7)

sit = f (uit) (5.8)

sit = z′itδ + ρsi,t−1 + ξit, ξit ∼ N
(

0, 1
φ

)

(5.9)

si1 =
z′i1δ

1− ρ
+ ξi1, ξi1 ∼ N

(

0, 1
φ(1−ρ)2

)

(5.10)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� yit is the value of the dependent variable for group i, observed in period t

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� β is a K×1 vector of parameters associated with the variables in the observed equation

� τ is the precision of the noise component of the error term in the observed equation:
σ2
v = 1

τ

� ui is the inefficiency component of the error term

� sit is the value of the hidden-state variable for group i, period t; this hidden state
is a monotonic transformation of the inefficiency component of the error term: sit =
f (uit) and controls the autoregressive process of efficiency; BayES supports the following
transformations:

– sit = log
(

e−uit

1−e−uit

)

as presented in Emvalomatis (2011); in this formulation the

efficiency score, e−uit , follows, conditional on si,t−1, a logit-normal distribution

– sit = log (uit) as presented in Tsionas (2006); in this formulation uit follows, condi-
tional on si,t−1, a log-normal distribution

� zit is an L×1 vector that stores the values of the L determinants of inefficiency, as they
enter equation (5.9), for group i, observed in period t

� δ is an L×1 vector of parameters associated with the variables in the hidden-state equation

� ρ is a parameter that measures the persistence of inefficiency

� φ is the precision of the error term in the hidden-state equation: σ2
ξ = 1

φ

•i When ui enters the specification with a plus sign then the model represents a cost frontier,

while when ui enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.

△! Due to Metropolis-Hastings updates used by BayES in the estimation of dynamic stochastic

frontier models, the draws from the posterior are likely to have very large autocorrelation

times. Therefore, long burn-ins are recommended (above 30,000 draws) and large thinning

parameters if machine memory is an issue.

Priors

Parameter Probability density function Default hyperparameters

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β −mβ)

′ Pβ (β −mβ)
}

mβ = 0K , Pβ = 0.001 · IK
table continues on next page
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table continued from previous page

Parameter Probability density function Default hyperparameters

τ p (τ) =
baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

δ p (δ) = |Pδ|
1/2

(2π)L/2 exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0L, Pδ = 0.001 · IL
ρ p (ρ) = ρaρ−1(1−ρ)ρbρ−1

B(aρ,bρ)
aρ = 4.0, bρ = 2.0

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 0.1, bφ = 0.01

Syntax

[<model name> = ] sf_dyn ( y ∼ x1 x2 . . . xK | z1 z2 . . . zL [, <options>] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� z1 z2 . . . zL is a list of the L variable names that enter the hidden-state equation, as they
appear in the dataset used for estimation; when a constant term is to be included in the
model, this must be requested explicitly; it is possible to run a model with an empty z

list, however, it is recommended that at least a constant term is included

△!
Groups that contain observations which are not consecutive according to the panel time

variable (for example, a group is observed for two consecutive periods, not observed for

the following period and observed again for another string of consecutive time periods) are

split into multiple groups, with each string of consecutive observations treated as a different

group. A warning is produced when the dataset used for estimation contains groups with

gaps in the time dimension.

The optional arguments for the dynamic stochastic frontier model are:9

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "explogitn" � "logn"

the default value is "explogitn"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

9Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Hyperparameters

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
"m_delta" mean vector of the prior for δ (L×1 vector); the default value is 0L

"P_delta" precision matrix of the prior for δ (L×L symmetric and positive-definite
matrix); the default value is 0.001·IL

"a_rho" alpha parameter of the prior for ρ (positive number); the default value is 4
"b_rho" beta parameter of the prior for ρ (positive number); the default value is 2
"a_phi" shape parameter of the prior for φ (positive number); the default value is 0.1
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.01
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables in

the x list
τ tau precision parameter of the noise component of the error term, vi
δ variable_name vector of parameters associated with the independent variables in

the z list
φ phi precision parameter of the error term in the hidden-state equation

of the error term, ui

σv sigma_v standard deviation of the noise component of the error term, σv =
1/τ1/2

σs sigma_s standard deviation of the error term in the hidden-state equation:
σα = 1/φ1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a dynamic stochastic frontier model is created,
then the following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β, τ , δ, ρ and φ
y$x1,. . .,y$xK vectors containing the draws from the posterior of the parameters asso-

ciated with variables x1,. . .,xK (the names of these vectors are the names
of the variables that were included in the right-hand side of the model,
prepended by y$, where y is the name of the dependent variable; this is
done so that the samples on the parameters associated with a variable that
appears in both x and z lists can be distinguished)

tau vector containing the draws from the posterior of τ
s$z1,. . .,s$zL vectors containing the draws from the posterior of the parameters associ-

ated with variables z1,. . .,zL (the names of these vectors are the names of
the variables that were included in the z list, in the right-hand side of the
model, prepended by s$; this is done so that the samples on the parame-
ters associated with a variable that appears in both x and z lists can be
distinguished)
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rho vector containing the draws from the posterior of ρ
phi vector containing the draws from the posterior of φ (available after the

estimation of the truncated-normal model)
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

eff_i N × 1 vector that stores the expected values of the observation-specific
efficiency scores, E (e−ui); the values in this vector are not guaranteed to
be in the same order as the order in which the observations appear in the
dataset used for estimation; use the store() function to associate the values
in eff_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

The dynamic stochastic frontier model uses the store() function to associate the estimates
of the efficiency scores (eff_i) with specific observations and store their values in the dataset
used for estimation. The generic syntax for a statement involving the store() function after
estimation of a dynamic stochastic frontier model is:

store ( eff_i , <new variable name> [, "model"=<model name>] );

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

explogitnSF = sf_dyn ( y ∼ constant x1 x2 x3 | constant z2 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

explogitnSF = sf_dyn ( y ∼ constant x1 x2 x3 | constant z2 ,

"udist" = "explogitn " );

lognSF = sf_dyn ( y ∼ constant x1 x2 x3 | constant z2 ,

"udist" = "logn" );

store ( eff_i , eff_explogitn , "model " = explogitnSF );

store ( eff_i , eff_logn , "model " = lognSF );

pmp ( { explogitnSF , lognSF } );
✝ ✆
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5.8 Random-effects dynamic stochastic frontier

Mathematical representation

yit = αi + x′
itβ + vit ± uit, vit ∼ N

(

0, 1
τ

)

, αi ∼ N
(

0, 1
ω

)

(5.11)

sit = f (uit) (5.12)

sit = z′itδ + ρsi,t−1 + ξit, ξit ∼ N
(

0, 1
φ

)

(5.13)

si1 =
z′i1δ

1− ρ
+ ξi1, ξi1 ∼ N

(

0, 1
φ(1−ρ)2

)

(5.14)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� yit is the value of the dependent variable for group i, observed in period t

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� β is a K×1 vector of parameters associated with the variables in the observed equation

� τ is the precision of the noise component of the error term in the observed equation:
σ2
v = 1

τ

� αi is the group-specific error term for group i

� ω is precision of the group-specific error term: σ2
α = 1

ω

� ui is the inefficiency component of the error term

� sit is the value of the hidden-state variable for group i, period t; this hidden state
is a monotonic transformation of the inefficiency component of the error term: sit =
f (uit) and controls the autoregressive process of efficiency; BayES supports the following
transformations:

– sit = log
(

e−uit

1−e−uit

)

as presented in Emvalomatis (2011); in this formulation the

efficiency score, e−uit , follows, conditional on si,t−1, a logit-normal distribution

– sit = log (uit) as presented in Tsionas (2006); in this formulation uit follows, condi-
tional on si,t−1, a log-normal distribution

� zit is an L×1 vector that stores the values of the L determinants of inefficiency, as they
enter equation (5.13), for group i, observed in period t

� δ is an L×1 vector of parameters associated with the variables in the hidden-state equation

� ρ is a parameter that measures the persistence of inefficiency

� φ is the precision of the error term in the hidden-state equation: σ2
ξ = 1

φ

•i When ui enters the specification with a plus sign then the model represents a cost frontier,

while when ui enters with a minus sign the model represents a production frontier. For the

efficiency scores generated by a stochastic frontier model to be meaningful, the dependent

variable in both cases must be in logarithms.

•i The mean of the distribution of the αis is restricted to zero and, therefore, these are simply

group-specific errors terms. However, including a constant term in the set of independent

variables is valid and leads to a specification equivalent to one where the group effects are

draws from a normal distribution with mean equal to the parameter associated with the

constant term and precision ω.
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△! Due to Metropolis-Hastings updates used by BayES in the estimation of dynamic stochastic

frontier models, the draws from the posterior are likely to have very large autocorrelation

times. Therefore, long burn-ins are recommended (above 30,000 draws) and large thinning

parameters if machine memory is an issue.

Priors

Parameter Probability density function Default hyperparameters

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0K , Pβ = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

ω p (ω) =
baω
ω

Γ(aω)ω
aω−1e−ωbω aω = 0.01, bω = 0.001

δ p (δ) = |Pδ|
1/2

(2π)L/2 exp
{

− 1
2 (δ −mδ)

′ Pδ (δ −mδ)
}

mδ = 0L, Pδ = 0.001 · IL
ρ p (ρ) = ρaρ−1(1−ρ)ρbρ−1

B(aρ,bρ)
aρ = 4.0, bρ = 2.0

φ p (φ) =
b
aφ
φ

Γ(aφ)
φaφ−1e−φbφ aφ = 0.1, bφ = 0.01

Syntax

[<model name> = ] sf_dyn_re ( y ∼ x1 x2 . . . xK | z1 z2 . . . zL [,<options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

� z1 z2 . . . zL is a list of the L variable names that enter the hidden-state equation, as they
appear in the dataset used for estimation; when a constant term is to be included in the
model, this must be requested explicitly; it is possible to run a model with an empty z

list, however, it is recommended that at least a constant term is included

△! BayES automatically drops from the sample used for estimation groups which are observed

only once. This is because for these groups the group effect (αi) cannot be distinguished

from the noise component of the error term (vit).

△!
Groups that contain observations which are not consecutive according to the panel time

variable (for example, a group is observed for two consecutive periods, not observed for

the following period and observed again for another string of consecutive time periods) are

split into multiple groups, with each string of consecutive observations treated as a different

group. A warning is produced when the dataset used for estimation contains groups with

gaps in the time dimension.

The optional arguments for the random-effects dynamic stochastic frontier model are:10

10Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Model specification

"udist" specification of the distribution of the inefficiency component of the error
term; the following options are available, corresponding to the distributions
presented at the beginning of this section:

� "explogitn" � "logn"

the default value is "explogitn"

"production" boolean specifying the type of frontier (production/cost); it could be set to
either true (production) or false (cost); the default value is true

Hyperparameters

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
"a_omega" shape parameter of the prior for ω (positive number); the default value is

0.01
"b_omega" rate parameter of the prior for ω (positive number); the default value is 0.001
"m_delta" mean vector of the prior for δ (L×1 vector); the default value is 0L

"P_delta" precision matrix of the prior for δ (L×L symmetric and positive-definite
matrix); the default value is 0.001·IL

"a_rho" alpha parameter of the prior for ρ (positive number); the default value is 4
"b_rho" beta parameter of the prior for ρ (positive number); the default value is 2
"a_phi" shape parameter of the prior for φ (positive number); the default value is 0.1
"b_phi" rate parameter of the prior for φ (positive number); the default value is 0.01
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables in

the x list
τ tau precision parameter of the noise component of the error term, vi
ω omega precision parameter of the group-specific error term, αi

δ variable_name vector of parameters associated with the independent variables in
the z list

φ phi precision parameter of the error term in the hidden-state equation
of the error term, ui

table continues on next page
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table continued from previous page

σv sigma_v standard deviation of the noise component of the error term, σv =
1/τ1/2

σα sigma_alpha standard deviation of the group-specific error term: σα = 1/ω1/2

σs sigma_s standard deviation of the error term in the hidden-state equation:
σα = 1/φ1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-effects dynamic stochastic frontier model
is created, then the following results are saved in the model item and are accessible via the ‘.’
operator:

Samples a matrix containing the draws from the posterior of β, τ , ω, δ, ρ and φ
y$x1,. . .,y$xK vectors containing the draws from the posterior of the parameters asso-

ciated with variables x1,. . .,xK (the names of these vectors are the names
of the variables that were included in the right-hand side of the model,
prepended by y$, where y is the name of the dependent variable; this is
done so that the samples on the parameters associated with a variable that
appears in both x and z lists can be distinguished)

tau vector containing the draws from the posterior of τ
omega vector containing the draws from the posterior of ω
s$z1,. . .,s$zL vectors containing the draws from the posterior of the parameters associ-

ated with variables z1,. . .,zL (the names of these vectors are the names of
the variables that were included in the z list, in the right-hand side of the
model, prepended by s$; this is done so that the samples on the parame-
ters associated with a variable that appears in both x and z lists can be
distinguished)

rho vector containing the draws from the posterior of ρ
phi vector containing the draws from the posterior of φ (available after the

estimation of the truncated-normal model)
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

alpha_i N×1 vector that stores the group-specific errors; the values in this vector
are not guaranteed to be in the same order as the order in which the
groups appear in the dataset used for estimation; use the store() function
to associate the values in alpha_i with the observations in the dataset

eff_i N × 1 vector that stores the expected values of the observation-specific
efficiency scores, E (e−ui); the values in this vector are not guaranteed to
be in the same order as the order in which the observations appear in the
dataset used for estimation; use the store() function to associate the values
in eff_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):
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� diagnostics()

� test()

� pmp()

� store()

� mfx()

The random-effects dynamic stochastic frontier model uses the store() function to asso-
ciate the group effects (alpha_i) or the estimates of the efficiency scores (eff_i) with specific
observations and store their values in the dataset used for estimation. The generic syntax
for a statement involving the store() function after estimation of a random-effects dynamic
stochastic frontier model and for each of these two quantities is:

store ( alpha_i , <new variable name> [, "model"=<model name>] );

and:

store ( eff_i , <new variable name> [, "model"=<model name>] );

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

explogitnSF = sf_dyn_re ( y ∼ constant x1 x2 x3 | constant z2 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset1 .csv ", ",");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

explogitnSF = sf_dyn_re ( y ∼ constant x1 x2 x3 | constant z2 ,

"udist" = "explogitn " );

lognSF = sf_dyn_re ( y ∼ constant x1 x2 x3 | constant z2 ,

"udist" = "logn" );

store ( alpha_i , re_explogitn , "model" = explogitnSF );

store ( alpha_i , re_logn , "model " = lognSF );

store ( eff_i , eff_explogitn , "model " = explogitnSF );

store ( eff_i , eff_logn , "model " = lognSF );

pmp ( { explogitnSF , lognSF } );
✝ ✆
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6.1 Binary Probit

Mathematical representation

Prob (yi = 1) = Φ (x′
iβ) (6.1)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can take two values: 0
and 1

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� Φ (·) is the standard-Normal cdf

An equivalent representation uses the latent variable y∗i :

y∗i = x′
iβ + εi, εi ∼ N(0, 1)

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

(6.2)

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK

Syntax

[<model name> = ] probit ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only two values:

0 and 1 (with 1 indicating “success”). Observations with missing values in y are dropped

during estimation, but if a numerical value other than 0 and 1 is encountered, then an error

is produced.

The optional arguments for the binary Probit model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"seed" value of the seed for the random-number generator (positive integer); the
default value is 42

Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a binary Probit model is created, then the following
results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The binary Probit model uses the mfx() function to calculate and report the marginal effects
of the independent variables on the probability of success. Because the model calculates only
one type of marginal effects, the only valid value for the "type" option is 1. The generic syntax
for a statement involving the mfx() function after estimation of a binary Probit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

The binary Probit model uses the predict() function to generate predictions of the prob-
ability of success. Because the model generates only one type of predictions, the only valid
value for the "type" option is 1. The generic syntax for a statement involving the predict()

function after estimation of a binary Probit model is:
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[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

See the general documentation of the predict() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

probit ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = probit ( y ∼ constant x1 x2 x3 x4,

"m"=ones(5,1) , "P"=0.1* eye (5,5) ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .x3 , "title " = "\beta3 from the Probit model ");

margeff_mean = mfx ("point"="mean","model "=myModel );

margeff_median = mfx ("point "="median ","model "=myModel );

margeff_eachpoint = mfx ("point "="x_i ","model "=myModel );

margeff_atx = mfx ("point "=[1,1,0.5,2,0], "model "=myModel );

predict ();
✝ ✆
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6.2 Binary Logit

Mathematical representation

Prob (yi = 1) = Λ (x′
iβ) (6.3)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can take two values: 0
and 1

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� Λ (·) is the standard-Logistic cdf

An equivalent representation uses the latent variable y∗i :

y∗i = x′
iβ + εi, εi ∼ Logistic (0, 1)

yi =

{

1 if y∗i > 0
0 if y∗i ≤ 0

(6.4)

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK

Syntax

[<model name> = ] logit( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only two values:

0 and 1 (with 1 indicating “success”). Observations with missing values in y are dropped

during estimation, but if a numerical value other than 0 and 1 is encountered, then an error

is produced.

The optional arguments for the binary Logit model are:2

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1

2Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"seed" value of the seed for the random-number generator (positive integer); the
default value is 42

Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a binary Logit model is created, then the following
results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The binary Logit model uses the mfx() function to calculate and report the marginal effects
of the independent variables on the probability of success. Because the model calculates only
one type of marginal effects, the only valid value for the optional "type" is 1. The generic syntax
for a statement involving the mfx() function after estimation of a binary Logit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

The binary Logit model uses the predict() function to generate predictions of the probability
of success. Because the model generates only one type of predictions, the only valid value for
the "type" option is 1. The generic syntax for a statement involving the predict() function after
estimation of a binary Logit model is:
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[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

See the general documentation of the predict() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

logit ( y ∼ constant x1 x2 x3 x4 , "logML_CJ " = true );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = logit ( y ∼ constant x1 x2 x3 x4 ,

"m"=ones(5,1) , "P"=0.1* eye (5,5) ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .x3 , "title " = "beta3 from the Logit model");

margeff_mean = mfx ("point"="mean","model "=myModel );

margeff_median = mfx ("point "="median ","model "=myModel );

margeff_eachpoint = mfx ("point "="x_i ","model "=myModel );

margeff_atx = mfx ("point "=[1,1,0.5,2,0], "model "=myModel );

predict ();
✝ ✆
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6.3 Random-effects binary Probit

Mathematical representation

Prob (yit = 1) = Φ (αi + x′
itβ) , αi ∼ N

(

0, 1
ω

)

(6.5)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� yit is the value of the dependent variable for group i, observed in period t and it can take
two values: 0 and 1

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� β is a K×1 vector of parameters

� αi is the group-specific error term for group i

� ω is the precision of the group-specific error term: σ2
α = 1

ω

� Φ (·) is the standard-Normal cdf

An equivalent representation uses the latent variable y∗it:

y∗it = αi + x′
itβ + εit, εit ∼ N(0, 1) , αi ∼ N

(

0, 1
ω

)

,

yit =

{

1 if y∗it > 0
0 if y∗it ≤ 0

(6.6)

•i The mean of the distribution of the αis is restricted to zero and, therefore, these are simply

group-specific errors terms. However, including a constant term in the set of independent

variables is valid and leads to a specification equivalent to one where the group effects are

draws from a normal distribution with mean equal to the parameter associated with the

constant term and precision ω.

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)′ P (β −m)

}

m = 0K , P = 0.001 · IK
ω p (ω) =

baω
ω

Γ(aω)ω
aω−1e−ωbω aω = 0.01, bω = 0.001

Syntax

[<model name> = ] probit_re ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only two values:

0 and 1 (with 1 indicating “success”). Observations with missing values in y are dropped

during estimation, but if a numerical value other than 0 and 1 is encountered, then an error

is produced.
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△! BayES automatically drops from the sample used for estimation groups which are observed

only once. This is because for these groups the group effect (αi) cannot be distinguished

from the error term (εit).

The optional arguments for the random-effects binary Probit model are:3

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_omega" shape parameter of the prior for ω (positive number); the default value is
0.01

"b_omega" rate parameter of the prior for ω (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
ω omega precision parameter of the group-specific error term, αi

σα sigma_alpha standard deviation of the group-specific error term: σα = 1/ω1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-effects binary Probit model is created,
then the following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and ω
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

omega vector containing the draws from the posterior of ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

3Optional arguments are always given in option-value pairs (eg. "chains"=3).
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alpha_i N×1 vector that stores the group-specific errors; the values in this vector
are not guaranteed to be in the same order as the order in which the
groups appear in the dataset used for estimation; use the store() function
to associate the values in alpha_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

� predict()

The random-effects binary Probit model uses the store() function to associate the group
effects (alpha_i) with specific observations and store their values in the dataset used for esti-
mation. The generic syntax for a statement involving the store() function after estimation of
a random-effects binary Probit model is:

store ( alpha_i , <new variable name>, ["model"=<model name>] );

The random-effects binary Probit model uses the mfx() function to calculate and report
the marginal effects of the independent variables on the probability of success. There are two
types of marginal effects which can be requested by setting the "type" argument of the mfx()

function equal to 1 or 2:

1. when "type"=1 the marginal effects are calculated marginally with respect to the group
effects.

2. when "type"=2 the marginal effects are calculated conditionally on the group-effects being
equal to zero (the expected value of the group effects, when treated as group-specific
errors).

The generic syntax for a statement involving the mfx() function after estimation of a random-
effects binary Probit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=2 [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculating these two types of marginal effects. The default value of the "type" option is
1. See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

The random-effects binary Probit model uses the predict() function to generate predictions
of the probability of success. There are two types of predictions which can be requested by
setting the "type" argument of the mfx() function equal to 1 or 2:

1. when "type"=1 the predictions are generated marginally with respect to the group effects.

2. when "type"=2 the predictions are generated conditionally on the group-effects being equal
to zero (the expected value of the group effects, when treated as group-specific errors).

The generic syntax for a statement involving the predict() function after estimation of a
random-effects binary Probit model is:
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[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

and:

[<id value>] = predict ( "type"=2 [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

for generating these two types of predictions effects. The default value of the "type" option is
1. See the general documentation of the predict() function (section B.14) for details on the
other optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

probit_re ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

myModel = probit_re ( y ∼ constant x1 x2 x3 x4,

"m"=ones(5,1) , "P"=0.1* eye (5,5) , "a_omega "=0.1, "b_omega "=0.01 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .x3 , "title " = "\beta3 from the Probit model ");

margeff_mean = mfx ("point"="mean","model "=myModel ,"type"=1) ;

margeff_mean = mfx ("point"="mean","model "=myModel ,"type"=2) ;

predict ("type"=1, "prefix "=marg_);

predict ("type"=2, "prefix "=cond_);
✝ ✆
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6.4 Random-effects binary Logit

Mathematical representation

Prob (yit = 1) = Λ (αi + x′
itβ) , αi ∼ N

(

0, 1
ω

)

(6.7)

� the model is estimated using observations from N groups, each group observed for Ti

periods (balanced or unbalanced panels); the total number of observations is
∑N

i=1 Ti

� yit is the value of the dependent variable for group i, observed in period t and it can take
two values: 0 and 1

� xit is a K×1 vector that stores the values of the K independent variables for group i,
observed in period t

� β is a K×1 vector of parameters

� αi is the group-specific error term for group i

� ω is the precision of the group-specific error term: σ2
α = 1

ω

� Λ (·) is the standard-Logistic cdf

An equivalent representation uses the latent variable y∗it:

y∗it = αi + x′
itβ + εit, εit ∼ Logistic (0, 1) , αi ∼ N

(

0, 1
ω

)

,

yit =

{

1 if y∗it > 0
0 if y∗it ≤ 0

(6.8)

•i The mean of the distribution of the αis is restricted to zero and, therefore, these are simply

group-specific errors terms. However, including a constant term in the set of independent

variables is valid and leads to a specification equivalent to one where the group effects are

draws from a normal distribution with mean equal to the parameter associated with the

constant term and precision ω.

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)′ P (β −m)

}

m = 0K , P = 0.001 · IK
ω p (ω) =

baω
ω

Γ(aω)ω
aω−1e−ωbω aω = 0.01, bω = 0.001

Syntax

[<model name> = ] logit_re ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only two values:

0 and 1 (with 1 indicating “success”). Observations with missing values in y are dropped

during estimation, but if a numerical value other than 0 and 1 is encountered, then an error

is produced.
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△! BayES automatically drops from the sample used for estimation groups which are observed

only once. This is because for these groups the group effect (αi) cannot be distinguished

from the error term (εit).

The optional arguments for the random-effects binary Logit model are:4

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_omega" shape parameter of the prior for ω (positive number); the default value is
0.01

"b_omega" rate parameter of the prior for ω (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
ω omega precision parameter of the group-specific error term, αi

σα sigma_alpha standard deviation of the group-specific error term: σα = 1/ω1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a random-effects binary Logit model is created,
then the following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and ω
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

omega vector containing the draws from the posterior of ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

4Optional arguments are always given in option-value pairs (eg. "chains"=3).
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alpha_i N×1 vector that stores the group-specific errors; the values in this vector
are not guaranteed to be in the same order as the order in which the
groups appear in the dataset used for estimation; use the store() function
to associate the values in alpha_i with the observations in the dataset

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� store()

� mfx()

� predict()

The random-effects binary Logit model uses the store() function to associate the group
effects (alpha_i) with specific observations and store their values in the dataset used for esti-
mation. The generic syntax for a statement involving the store() function after estimation of
a random-effects binary Logit model is:

store ( alpha_i , <new variable name>, ["model"=<model name>] );

The random-effects binary Logit model uses the mfx() function to calculate and report the
marginal effects of the independent variables on the probability of success. There are two types
of marginal effects which can be requested by setting the "type" argument of the mfx() function
equal to 1 or 2:

1. when "type"=1 the marginal effects are calculated marginally with respect to the group
effects.

2. when "type"=2 the marginal effects are calculated conditionally on the group-effects being
equal to zero (the expected value of the group effects, when treated as group-specific
errors).

The generic syntax for a statement involving the mfx() function after estimation of a random-
effects binary Logit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=2 [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculating these two types of marginal effects. The default value of the "type" option is
1. See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

The random-effects binary Logit model uses the predict() function to generate predictions
of the probability of success. There are two types of predictions which can be requested by
setting the "type" argument of the mfx() function equal to 1 or 2:

1. when "type"=1 the predictions are generated marginally with respect to the group effects.

2. when "type"=2 the predictions are generated conditionally on the group-effects being equal
to zero (the expected value of the group effects, when treated as group-specific errors).

The generic syntax for a statement involving the predict() function after estimation of a
random-effects binary Logit model is:
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[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

and:

[<id value>] = predict ( "type"=2 [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

for generating these two types of predictions effects. The default value of the "type" option is
1. See the general documentation of the predict() function (section B.14) for details on the
other optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

logit_re ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset4 .csv ");

myData .constant = ones(rows(myData ), 1);

set_pd ( year , id , "dataset " = myData );

myModel = logit_re ( y ∼ constant x1 x2 x3 x4 ,

"m"=ones(5,1) , "P"=0.1* eye (5,5) , "a_omega "=0.1, "b_omega "=0.01 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .x3 , "title " = "\beta3 from the Logit model ");

margeff_mean = mfx ("point"="mean","model "=myModel ,"type"=1) ;

margeff_mean = mfx ("point"="mean","model "=myModel ,"type"=2) ;

predict ("type"=1, "prefix "=marg_);

predict ("type"=2, "prefix "=cond_);
✝ ✆
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6.5 Multinomial Probit

Mathematical representation

pmi = Prob (yi = m|x′
iβm) , m = 1, . . . ,M

p0i = 1−
M
∑

m=1
pmi, with additional structure on each pmi

(6.9)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can take M + 1 values:
0, 1, . . . , M

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� βm is a K×1 vector of parameters for alternative m, m = 1, 2, . . . ,M

The latent-variable representation of the multinomial Probit is:

y∗1i = x′
iβ1 + ε1i

y∗2i = x′
iβ2 + ε2i

...
...

...
y∗Mi = x′

iβM + εMi

yi =



















0 if maxj
{

y∗ji
}

≤ 0
1 if maxj

{

y∗ji
}

= y∗1i and y∗1i > 0
...

...
...

...
...

M if maxj
{

y∗ji
}

= y∗Mi and y∗Mi > 0

(6.10)

Let:

β
(MK)×1
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β2
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βM











and εi
M×1

=











ε1i
ε2i
...

εMi











εi is assumed to follow a multivariate-Normal distribution: ε ∼ N
(

0,Ω−1
)

. For identification
purposes the precision matrix is restricted such that tr (Ω) = M .

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)MK/2 exp
{

− 1
2 (β −m)′ P (β −m)

}

m=0MK , P=0.001 · IMK

Ω p (Ω) = |Ω|
n−M−1

2 |V−1|n/2

2nM/2ΓM(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

n = M2, V = 100
M · IM

Following Burgette & Nordheim (2012), the prior for Ω is transformed such that tr (Ω) = M

Syntax

[<model name> = ] mnprobit ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly
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•i The dependent variable, y, in the dataset used for estimation must contain only consecutive

integer values, with the numbering starting at 0 (base category). Observations with missing

values in y are dropped during estimation, but if a non-integer numerical value is encountered

or if the integer values are not consecutive (for example there are no observations for which

yi = 1), then an error is produced.

The optional arguments for the multinomial Probit model are:5

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (MK×1 vector); the default value is 0MK

"P" precision matrix of the prior for β (MK×MK symmetric and positive-definite
matrix); the default value is 0.001·IMK

"V" scale matrix of the prior for Ω (M×M symmetric and positive-definite matrix);
the default value is 100

M ·IM
"n" degrees-of-freedom parameter of the prior for Ω (real number greater than or

equal to M); the default value is M2

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables;

these are broken into groups according to the alternative, m, the
parameter is associated with

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a multinomial Probit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β (across all alterna-
tives, starting from the first one) and the unique elements of Ω

y_m$x1,. . .,
y_m$xK

vectors containing the draws from the posterior of the parameters asso-
ciated with variables x1,. . .,xK, for m = 1, 2, . . . ,M (the names of these
vectors are the names of the variables that were included in the right-hand
side of the model, prepended by y_m$, where y_m is the name of the depen-
dent variable followed by an underscore and the index of the alternative;
this is done so that the samples on the parameters associated with the same
independent variable but for different alternatives can be distinguished)

5Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Omega_i_j vectors containing the draws from the posterior of the unique elements of

Ω; because Ω is symmetric, only (M−1)M
2 +M of its elements are stored

(instead of all M2 elements); i and j index the row and column of Ω,
respectively, at which the corresponding element is located

Omega M×M matrix that stores the posterior mean of Ω; Ω is restricted such
that tr

(

Ω−1
)

= M
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The multinomial Probit model uses the mfx() function to calculate and report the marginal
effects of the independent variables on the probability of each outcome, m, occurring. Because
the model calculates only one type of marginal effects, the only valid value for the "type"

option is 1. The generic syntax for a statement involving the mfx() function after estimation of
a multinomial Probit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

△! Although BayES can calculate marginal effects for the multinomial Probit model at each

observation, the calculations may take an excessive amount of time to complete. This is

because the GHK simulator needs to be invoked at every observed data point, each time

using all draws from the posterior, thus leading to an immense number of computations.

The multinomial Probit model uses the predict() function to generate predictions of the
probability each of the M+1 outcomes occuring. Because the model generates only one type of
predictions, the only valid value for the "type" option is 1. The generic syntax for a statement
involving the predict() function after estimation of a multinomial Probit model is:

[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

See the general documentation of the predict() function (section B.14) for details on the other
optional arguments.

△!
Although BayES can generate summary statistics of the predictions for the multinomial

Probit model at each observation, the calculations may take an excessive amount of time to

complete. This is because the GHK simulator needs to be invoked at every observed data

point, each time using all draws from the posterior, thus leading to an immense number of

computations.
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Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

mnprobit ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = mnprobit ( y ∼ constant x1 x2 x3 x4 ,

"m"=ones(2*5 ,1) , "P"=0.1* eye (2*5 ,2*5) ,

"burnin "=20000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .y_2$x3 , "title " = "\beta3 for the 2nd alternative ");

margeff_mean = mfx ("point"="mean","model "=myModel );

margeff_median = mfx ("point "="median ","model "=myModel );

margeff_atx = mfx ("point "=[1,1,0.5,2,0], "model "=myModel );

predict ();
✝ ✆
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6.6 Multinomial Logit

Mathematical representation

pmi = Prob (yi = m|x′
iβm) , m = 1, . . . ,M

p0i = 1−
M
∑

m=1
pmi, with additional structure on each pmi

(6.11)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can take M + 1 values:
0, 1, . . . , M

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� βm is a K×1 vector of parameters for alternative m, m = 1, 2, . . . ,M

The latent-variable representation of the multinomial Logit is:

y∗1i = x′
iβ1 + ε1i

y∗2i = x′
iβ2 + ε2i

...
...

...
y∗Mi = x′

iβM + εMi

yi =



















0 if maxj
{

y∗ji
}

≤ 0
1 if maxj

{

y∗ji
}

= y∗1i and y∗1i > 0
...

...
...

...
...

M if maxj
{

y∗ji
}

= y∗Mi and y∗Mi > 0

(6.12)

Let:

β
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and εi
M×1

=


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

ε1i
ε2i
...

εMi


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The εmis are assumed to follow a multivariate Logistic distribution (Malik & Abraham, 1973)
with mean zero.

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)MK/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m=0MK , P=0.001 · IMK

Syntax

[<model name> = ] mnlogit ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only consecutive

integer values, with the numbering starting at 0 (base category). Observations with missing

values in y are dropped during estimation, but if a non-integer numerical value is encountered

or if the integer values are not consecutive (for example there are no observations for which

yi = 1), then an error is produced.
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The optional arguments for the multinomial Logit model are:6

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (MK×1 vector); the default value is 0MK

"P" precision matrix of the prior for β (MK×MK symmetric and positive-definite
matrix); the default value is 0.001·IMK

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables;

these are broken into groups according to the alternative, m, the
parameter is associated with

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a multinomial Logit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β (across all alterna-
tives, starting from the first one)

y_m$x1,. . .,
y_m$xK

vectors containing the draws from the posterior of the parameters asso-
ciated with variables x1,. . .,xK, for m = 1, 2, . . . ,M (the names of these
vectors are the names of the variables that were included in the right-hand
side of the model, prepended by y_m$, where y_m is the name of the depen-
dent variable followed by an underscore and the index of the alternative;
this is done so that the samples on the parameters associated with the same
independent variable but for different alternatives can be distinguished)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

6Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The multinomial Logit model uses the mfx() function to calculate and report the marginal
effects of the independent variables on the probability of each outcome, m, occurring. Because
the model calculates only one type of marginal effects, the only valid value for the "type"

option is 1. The generic syntax for a statement involving the mfx() function after estimation of
a multinomial Logit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

The multinomial Logit model uses the predict() function to generate predictions of the
probability each of the M+1 outcomes occuring. Because the model generates only one type of
predictions, the only valid value for the "type" option is 1. The generic syntax for a statement
involving the predict() function after estimation of a multinomial Logit model is:

[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

See the general documentation of the predict() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

mnlogit ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = mnlogit ( y ∼ constant x1 x2 x3 x4 ,

"m"=ones(2*5 ,1) , "P"=0.1* eye (2*5 ,2*5) ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .y_2$x3 , "title " = "\beta3 for the 2nd alternative ");

margeff_mean = mfx ("point"="mean","model "=myModel );

margeff_median = mfx ("point "="median ","model "=myModel );

margeff_eachpoint = mfx ("point "="x_i ","model "=myModel );

margeff_atx = mfx ("point "=[1,1,0.5,2,0], "model "=myModel );

predict ();
✝ ✆
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6.7 Conditional Probit

Mathematical representation

pmi = Prob (yi = m|z′miδ + x′
iβm) , m = 1, . . . ,M

p0i = 1−
M
∑

m=1
pmi, with additional structure on each pmi

(6.13)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can take M + 1 values:
0, 1, . . . , M

� zmi is a K×1 vector that stores the values of the K independent variables for observation
i, which are specific to alternative m

� xi is an L×1 vector that stores the values of the L independent variables for observation
i, which are common to all alternatives

� δ is a K×1 vector of parameters, common to all alternatives

� βm is an L×1 vector of parameters for alternative m, m = 1, 2, . . . ,M

� there are J = K +M · L slope parameters to be estimated

The latent-variable representation of the conditional Probit is:

y∗1i = z′1iδ + x′
iβ1 + ε1i

y∗2i = z′2iδ + x′
iβ2 + ε2i

...
...

...
y∗Mi = z′Miδ + x′

iβM + εMi

yi =



















0 if maxj
{

y∗ji
}

≤ 0

1 if maxj
{

y∗ji
}

= y∗1i and y∗1i > 0
...

...
...

...
...

M if maxj
{

y∗ji
}

= y∗Mi and y∗Mi > 0

(6.14)

Let:
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and εi
M×1

=
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

ε1i
ε2i
...

εMi


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εi is assumed to follow a multivariate-Normal distribution: ε ∼ N
(

0,Ω−1
)

. For identification
purposes the precision matrix is restricted such that tr (Ω) = M .

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)J/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m=0J , P=0.001 · IJ

Ω p (Ω) = |Ω|
n−M−1

2 |V−1|n/2

2nM/2ΓM(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

n = M2, V = 100
M · IM

Following Burgette & Nordheim (2012), the prior for Ω is transformed such that tr (Ω) = M

Syntax

[<model name> = ] cprobit ( y ∼ z1 z2 ... zK [| x1 x2 . . . xL ] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� z1 z2 . . . zK is a list of the names, as they appear in the dataset used for estimation
except for the alternative index, of the independent variables which are associated with
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variables that vary by alternative; for each ‘zk’ variable, the dataset must contain M+1
variables whose names start by zk and followed by an underscore and the index of the
alternative to which the variable corresponds (counting starting at zero)

� x1 x2 . . . xL is a list of the names, as they appear in the dataset used for estimation, of
the independent variables which are common to all alternatives; when a constant term
is to be included in the model, this must be requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only consecutive

integer values, with the numbering starting at 0 (base category). Observations with missing

values in y are dropped during estimation, but if a non-integer numerical value is encountered

or if the integer values are not consecutive (for example there are no observations for which

yi = 1), then an error is produced.

The optional arguments for the conditional Probit model are:7

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (J×1 vector); the default value is 0J

"P" precision matrix of the prior for β (J ×J symmetric and positive-definite
matrix); the default value is 0.001·IJ

"V" scale matrix of the prior for Ω (M×M symmetric and positive-definite matrix);
the default value is 100

M ·IM
"n" degrees-of-freedom parameter of the prior for Ω (real number greater than or

equal to M); the default value is M2

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
δ variable_name vector of parameters associated with the independent variables

that vary by alternative
β variable_name vector of parameters associated with the independent variables

which are common to all alternatives; these are broken into groups
according to the alternative, m, the parameter is associated with

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a conditional Probit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

7Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Samples a matrix containing the draws from the posterior of β (including δ and
the βs across all alternatives, starting from the first one) and the unique
elements of Ω

z1,. . .,zK vectors containing the draws from the posterior of the parameters asso-
ciated with variables that vary by alternative, z1,. . .,zK; (the names of
these vectors are the names of the variables as they were included in the
right-hand side of the model, excluding the alternative index)

y_m$x1,. . .,
y_m$xK

vectors containing the draws from the posterior of the parameters asso-
ciated with variables that are common to all alternatives, x1,. . .,xK, for
m = 1, 2, . . . ,M (the names of these vectors are the names of the variables
that were included in the right-hand side of the model, prepended by y_m$,
where y_m is the name of the dependent variable followed by an underscore
and the index of the alternative; this is done so that the samples on the
parameters associated with the same independent variable but for different
alternatives can be distinguished)

Omega_i_j vectors containing the draws from the posterior of the unique elements of

Ω; because Ω is symmetric, only (M−1)M
2 +M of its elements are stored

(instead of all M2 elements); i and j index the row and column of Ω,
respectively, at which the corresponding element is located

Omega M×M matrix that stores the posterior mean of Ω; Ω is restricted such
that tr

(

Ω−1
)

= M
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The conditional Probit model uses the mfx() function to calculate and report the marginal
effects of the independent variables on the probability of each outcome, m, occurring. Because
the model calculates only one type of marginal effects, the only valid value for the "type"

option is 1. The generic syntax for a statement involving the mfx() function after estimation of
a conditional Probit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

△! Although BayES can calculate marginal effects for the conditional Probit model at each

observation, the calculations may take an excessive amount of time to complete. This is

because the GHK simulator needs to be invoked at every observed data point, each time

using all draws from the posterior, thus leading to an immense number of computations.
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The conditional Probit model uses the predict() function to generate predictions of the
probability each of the M+1 outcomes occuring. Because the model generates only one type of
predictions, the only valid value for the "type" option is 1. The generic syntax for a statement
involving the predict() function after estimation of a conditional Probit model is:

[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variablename>] );

See the general documentation of the predict() function (section B.14) for details on the other
optional arguments.

△!
Although BayES can generate summary statistics of the predictions for the conditional Pro-

bit model at each observation, the calculations may take an excessive amount of time to

complete. This is because the GHK simulator needs to be invoked at every observed data

point, each time using all draws from the posterior, thus leading to an immense number of

computations.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

cprobit ( y ∼ z w v | constant );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = cprobit ( y ∼ z w v | constant x1 x2 x3 x4,

"m"=ones (3+2*5 ,1) , "P"=0.01* eye (3+2*5 ,3+2*5) ,

"n"=10, "V"=eye (2,2) ,

"burnin "=20000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .z, "title" = "\delta1 ");

kden(myModel .y_2$x3 , "title " = "\beta3 for the 2nd alternative ");

margeff_mean = mfx ("point"="mean","model "=myModel );

margeff_median = mfx ("point "="median ","model "=myModel );

x_for_mfx = [

0.0 ,0.0 ,0.05 , // z, w, v for the base alternative

1.0 ,1.1 ,0.16 , // z, w, v for the 1st alternative

1.0 ,1.0 ,0.14 , // z, w, v for the 2nd alternative

1.0 ,1.0 ,0.5 ,2.0 ,0.0 // x variables

];

margeff_atx = mfx ("point "=x_for_mfx ,"model"=myModel );

predict ();
✝ ✆
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6.8 Conditional Logit

Mathematical representation

pmi = Prob (yi = m|z′miδ + x′
iβm) , m = 1, . . . ,M

p0i = 1−
M
∑

m=1
pmi, with additional structure on each pmi

(6.15)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can take M + 1 values:
0, 1, . . . , M

� zmi is a K×1 vector that stores the values of the K independent variables for observation
i, which are specific to alternative m

� xi is an L×1 vector that stores the values of the L independent variables for observation
i, which are common to all alternatives

� δ is a K×1 vector of parameters, common to all alternatives

� βm is an L×1 vector of parameters for alternative m, m = 1, 2, . . . ,M

� there are J = K +M · L parameters to be estimated

The latent-variable representation of the conditional Logit is:

y∗1i = z′1iδ + x′
iβ1 + ε1i

y∗2i = z′2iδ + x′
iβ2 + ε2i

...
...

...
y∗Mi = z′Miδ + x′

iβM + εMi

yi =



















0 if maxj
{

y∗ji
}

≤ 0

1 if maxj
{

y∗ji
}

= y∗1i and y∗1i > 0
...

...
...

...
...

M if maxj
{

y∗ji
}

= y∗Mi and y∗Mi > 0

(6.16)

Let:

β
J×1

=















δ

β1

β2
...

βM















and εi
M×1

=











ε1i
ε2i
...

εMi











The εmis are assumed to follow a multivariate Logistic distribution (Malik & Abraham, 1973)
with mean zero.

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)J/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m=0J , P=0.001 · IJ

Syntax

[<model name> = ] clogit ( y ∼ z1 z2 ... zK [| x1 x2 . . . xL ] [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� z1 z2 . . . zK is a list of the names, as they appear in the dataset used for estimation
except for the alternative index, of the independent variables which are associated with
variables that vary by alternative; for each ‘zk’ variable, the dataset must contain M+1
variables whose names start by zk and followed by an underscore and the index of the
alternative to which the variable corresponds (counting starting at zero)
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� x1 x2 . . . xL is a list of the names, as they appear in the dataset used for estimation, of
the independent variables which are common to all alternatives; when a constant term
is to be included in the model, this must be requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain only consecutive

integer values, with the numbering starting at 0 (base category). Observations with missing

values in y are dropped during estimation, but if a non-integer numerical value is encountered

or if the integer values are not consecutive (for example there are no observations for which

yi = 1), then an error is produced.

The optional arguments for the conditional Logit model are:8

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (J×1 vector); the default value is 0J

"P" precision matrix of the prior for β (J ×J symmetric and positive-definite
matrix); the default value is 0.001·IJ

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
δ variable_name vector of parameters associated with the independent variables

that vary by alternative
β variable_name vector of parameters associated with the independent variables

which are common to all alternatives; these are broken into groups
according to the alternative, m, the parameter is associated with

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a conditional Logit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β (including δ and
the βs across all alternatives, starting from the first one)

z1,. . .,zK vectors containing the draws from the posterior of the parameters asso-
ciated with variables that vary by alternative, z1,. . .,zK; (the names of
these vectors are the names of the variables as they were included in the
right-hand side of the model, excluding the alternative index)

8Optional arguments are always given in option-value pairs (eg. "chains"=3).
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y_m$x1,. . .,
y_m$xK

vectors containing the draws from the posterior of the parameters asso-
ciated with variables that are common to all alternatives, x1,. . .,xK, for
m = 1, 2, . . . ,M (the names of these vectors are the names of the variables
that were included in the right-hand side of the model, prepended by y_m$,
where y_m is the name of the dependent variable followed by an underscore
and the index of the alternative; this is done so that the samples on the
parameters associated with the same independent variable but for different
alternatives can be distinguished)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The conditional Logit model uses the mfx() function to calculate and report the marginal
effects of the independent variables on the probability of each outcome, m, occurring. Because
the model calculates only one type of marginal effects, the only valid value for the "type"

option is 1. The generic syntax for a statement involving the mfx() function after estimation of
a conditional Logit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

The conditional Logit model uses the predict() function to generate predictions of the
probability each of the M+1 outcomes occuring. Because the model generates only one type of
predictions, the only valid value for the "type" option is 1. The generic syntax for a statement
involving the predict() function after estimation of a conditional Logit model is:

[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

See the general documentation of the predict() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

clogit ( y ∼ z w v | constant );
✝ ✆
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Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset7 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = clogit ( y ∼ z w v | constant x1 x2 x3 x4 ,

"m"=ones (3+2*5 ,1) , "P"=0.01* eye (3+2*5 ,3+2*5) ,

"burnin "=20000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true );

diagnostics ("model "=myModel );

kden(myModel .z, "title" = "\delta1 ");

kden(myModel .y_2$x3 , "title " = "\beta3 for the 2nd alternative ");

margeff_mean = mfx ("point"="mean","model "=myModel );

margeff_median = mfx ("point "="median ","model "=myModel );

margeff_eachpoint = mfx ("point "="x_i ","model "=myModel );

x_for_mfx = [

0.0 ,0.0 ,0.05 , // z, w, v for the base alternative

1.0 ,1.1 ,0.16 , // z, w, v for the 1st alternative

1.0 ,1.0 ,0.14 , // z, w, v for the 2nd alternative

1.0 ,1.0 ,0.5 ,2.0 ,0.0 // x variables

];

margeff_atx = mfx ("point "=x_for_mfx ,"model"=myModel );

predict ();
✝ ✆
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6.9 Multivariate Probit

Mathematical representation

y∗1i = x′
1iβ1 + ε1i

y∗2i = x′
2iβ2 + ε2i

...
...

...
y∗Mi = x′

MiβM + εMi

ymi =

{

1 if y∗mi > 0
0 if y∗mi ≤ 0

∀m = 1, 2. . . . ,M

(6.17)

where the y∗mi’s are not observed, but, similarly to binary Probit and Logit models, their signs
are determined by the corresponding observed ymis.

� the model is estimated using N observations

� ymi is the value of equation m’s dependent variable for observation i and it can take two
values: 0 and 1, ∀m = 1, 2, . . . ,M

� xmi is a Km×1 vector that stores the values of the Km independent variables for obser-
vation i, as they appear in equation m

� the same independent variable can appear in multiple equations, associated with different
coefficients

� βm is a Km×1 vector of parameters associated with equation m’s independent variables

� in total, there are K=
M
∑

m=1
Km β parameters to be estimated

� the M error terms jointly follow a multivariate Normal distribution with mean 0 and
covariance matrix Σ

A more compact representation of the model is:

y∗
i = Xiβ + εi, εi ∼ N(0,Σ)

where:

y∗
i

M×1

=











y1i
y2i
...

yMi











, Xi
M×K

=











x′
1i 0 . . . 0
0 x′

2i . . . 0
...

...
. . .

...
0 0 . . . x′

Mi











, β
K×1

=











β1

β2
...

βM











, εi
M×1

=











ε1i
ε2i
...

εMi











andΣ being the covariance matrix of εi: Σ ≡ Ω−1. For identification purposes,Σ is normalized
such that its diagonal elements are equal to one. Thus, Σ is, in fact, a correlation matrix.

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m=0K , P=0.001 · IK

Σ p
(

Σ̆
)

= |Σ̆|−
n+M+1

2 |S|n/2

2nM/2ΓM(n
2 )

exp
{

− 1
2 tr

(

SΣ̆
−1

)}

n = M2, V = 100
M · IM

The prior for Σ̆ is transformed such that diag (Σ) = 1M and Σ is a proper correlation matrix.
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•i An inverse-Wishart prior is used for a positive-definite, but otherwise unrestricted, matrix,

Σ̆. This prior is then internally transformed to a prior for Σ = DΣ̆D, where D is an

M×M diagonal matrix constructed by taking the inverse of the square root of the diagonal

elements of Σ̆: D = diag
([

σ̆
−1/2
11

σ̆
−1/2
22

· · · σ̆
−1/2
MM

])

.

•i The magnitude of the elements of the scale matrix, S, in the prior for Σ̆ affects the prior for
Σ only if S is not diagonal. The degrees-of-freedom parameter, n, in the prior for Σ̆ can be
used to control the dispersion of the implied prior density of Σ around the prior expected
value:

� E (Σ) = IM if S is diagonal

� E (Σ) = DSD if S is not diagonal

In both cases smaller values of n allow larger deviations form E (Σ).

△!
Due to an inverse-Wishart distribution being used as the prior for Σ̆, the prior expected

value of Σ̆ is 1

n−M−1
S. Although the prior for Σ̆ is transformed to a prior for Σ such that

the latter is a correlation matrix, due to simulation-based integration taking place in this

transformation when S is not diagonal, hyperparameter values that result into an expected

value of Σ̆ that is far from satisfying the conditions necessary for it to be a correlation

matrix may lead to numerical unstability issues when calculating the log-marginal likelihood

of the model. It is, therefore, advised that n is used to control the dispersion of Σ around

its expected value and S is subsequently defined such that 1

n−M−1
S is close to being a

proper correlation matrix (positive definite with values equal to one on the main diagonal).

Syntax

[<model name> = ] mvprobit ( {

y1 ∼ x11 x12 ... x1K1,

y2 ∼ x21 x22 ... x2K2,

...,

yM ∼ xM1 xM2 ... xMKM }

[, <options> ]
);

where:

� y1, y2, . . . , yM are the dependent variable names, as they appear in the dataset used for
estimation

� xm1 xm2 . . . xmKm is a list of the Km independent variable names for equation m =
1, 2, . . . ,M , as they appear in the dataset used for estimation; when a constant term
is to be included in an equation, this must be requested explicitly; M such lists must be
provided

•i All dependent variables, y1, y2, . . . , yM, in the dataset used for estimation must contain only

two values: 0 and 1 (with 1 indicating “success” for the respective outcome). Observations

with missing values in any dependent variable are dropped during estimation, but if a

numerical value other than 0 and 1 is encountered, then an error is produced.

The optional arguments for the multivarite Probit model are:9

9Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"S" scale matrix of the prior for Σ (M×M symmetric and positive-definite ma-
trix); the default value is 100

M ·IM
"n" degrees-of-freedom parameter of the prior for Σ (real number greater than or

equal to M); the default value is M2

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables;

these are broken into groups according to the equation in which
the independent variables appear

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a multivariate Probit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β (across all equations,
starting from the first equation) and the unique elements of Σ

ym$xm1,. . .,
ym$xmKm

vectors containing the draws from the posterior of the parameters associ-
ated with variables xm1,. . .,xmKm, for m = 1, 2, . . . ,M (the names of these
vectors are the names of the variables that were included in the right-
hand side of equation m, prepended by ym$, where ym is the name of the
dependent variable in equation m; this is done so that the samples on
the parameters associated with a variable that appears in more than one
equations can be distinguished)

Sigma_i_j vectors containing the draws from the posterior of the unique elements of

Σ; because Σ is symmetric, only (M−1)M
2 +M of its elements are stored

(instead of all M2 elements), including the elements that are restricted to
be equal to one; i and j index the row and column of Σ, respectively, at
which the corresponding element is located

Sigma M×M matrix that stores the posterior mean of Σ
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option
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nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

� predict()

The multivariate Probit model uses the mfx() function to calculate and report the marginal
effects of the independent variables on the probability of success for each of M dependent
variables. There are two types of marginal effects which can be requested by setting the "type"

argument of the mfx() function equal to 1 or 2:

1. when "type"=1 the marginal effects for each of the M outcomes are calculated marginally
with respect to the values of the remaining dependent variables

2. when "type"=2 the marginal effects are calculated conditionally on the values of other
dependent variables being equal to the values indicated by a vector z, passed to the
mfx() function using the "opt" option. This vector must have dimension equal to M and
values equal to either 0 or 1. A value of 0 in the m-th position of z indicates that the
m-th dependent variable is to restricted to 0 when calculating marginal effects on the
remaining variables; a value of 1 indicates that the m-th dependent variable is to be
restricted to 1 when calculating these marginal effects.

The generic syntax for a statement involving the mfx() function after estimation of a multivari-
ate Probit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=2, "opt "=z [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculating these two types of marginal effects. The default value of the "type" option is
1. See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

△! Although BayES can calculate marginal effects for the multivariate Probit model at each

observation, the calculations may take an excessive amount of time to complete. This is

because the GHK simulator needs to be invoked at every observed data point, each time

using all draws from the posterior, thus leading to an immense number of computations.

The multivariate Probit model uses the predict() function to generate predictions of the
probability of success for each of M dependent variables. There are two types of predictions
which can be requested by setting the "type" argument of the predict() function equal to 1 or
2:

1. when "type"=1 the predictions are generated for each of the M dependent variables are
calculated marginally with respect to the values of the remaining dependent variables
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2. when "type"=2 the predictions are generated conditionally on the values of other dependent
variables being equal to the values indicated by a vector z, passed to the predict() function
using the "opt" option. This vector must have dimension equal to M and values equal to
either 0 or 1. A value of 0 in the m-th position of z indicates that the m-th dependent
variable is to restricted to 0 when generating predictions for the remaining variables;
a value of 1 indicates that the m-th dependent variable is to be restricted to 1 when
generating these predictions.

The generic syntax for a statement involving the predict() function after estimation of a
random-effects binary Probit model is:

[<id value>] = predict ( ["type"=1] [, "point"=<point of calculation>] [,"model"=<model

name>] [, "stats"=true|false] [, "prefix"=<prefix for new variable name>] );

and:

[<id value>] = predict ( "type"=2, "opt "=z [, "point"=<point of

calculation>] [,"model"=<model name>] [, "stats"=true|false] [, "prefix"=<prefix for new

variable name>]
);

for generating these two types of predictions effects. The default value of the "type" option is
1. See the general documentation of the predict() function (section B.14) for details on the
other optional arguments.

△!
Although BayES can generate summary statistics of the predictions for the multivariate

Probit model at each observation, the calculations may take an excessive amount of time to

complete. This is because the GHK simulator needs to be invoked at every observed data

point, each time using all draws from the posterior, thus leading to an immense number of

computations.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset11 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = mvprobit ( {

y1 ∼ constant x11 x12 x13 x14 x15 ,

y2 ∼ constant x21 x22 x23 x24 ,

y3 ∼ constant x21 x22 x23

} );
✝ ✆
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Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset11 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = mvprobit ( {

y1 ∼ constant x11 x12 x13 x14 x15 ,

y2 ∼ constant x21 x22 x23 x24 ,

y3 ∼ constant x21 x22 x23

},

"m"=ones(15 ,1) , "P"=0.01* eye (15 ,15) , "n"=5,

"burnin "=20000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true

);

mfx ( "point "="mean", "model "=myModel );

x_for_mfx = [

1.0 ,1.0 ,1.0 ,1.0 ,1.0 ,0.0 , // values for the variables in the 1st equation

1.0 ,0.0 ,0.5 ,0.5 ,0.5 , // values for the variables in the 2nd equation

1.0 ,0.0 ,0.5 ,0.5 // values for the variables in the 3rd equation

];

mfx ( "point "=x_for_mfx , "model "=myModel );

mfx ( "point "="mean", "model "=myModel , "type"=2, "opt "=[1 ,0 ,1]) ;

predict ("prefix "=marg_);

predict ("prefix "=cond_ , "type"=2, "opt "=[1 ,0 ,1]) ;
✝ ✆
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7.1 Ordered Probit model

Mathematical representation

y∗i = x′
iβ + εi, εi ∼ N(0, 1)

yi =



















1 if γ0 < y∗i ≤ γ1
2 if γ1 < y∗i ≤ γ2
...

...
...

M if γM−1 < y∗i ≤ γM

(7.1)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can assume integer values
in the range 1, . . . ,M

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� the γs are parameters that represent the cutoff points between categories and they satisfy
the relation γ0 < γ1 < · · · < γM , with γ0 = −∞, γM = ∞ and, for identification
purposes, γ1 = 0; there are M−2 γs to be estimated

� following Albert & Chib (2001), to impose the inequality constraints on the γs the prob-
lem is re-parameterized using the 1-1 mapping:

δ2 = log (γ2 − γ1)
δ3 = log (γ3 − γ2)
... =

...
δM−1 = log (γM−1 − γM−2)

there are M−2 δs to be estimated and they are collected in an (M−2)× 1 vector δ

Priors

Parameter Probability density function Default hyperparameters

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0K , Pβ = 0.001 · IK
δ p (δ) = |Pδ|

1/2

(2π)
M−2

2

exp
{

− 1
2 (δ −mδ)

′ Pδ (δ −mδ)
}

mδ = 0M−2, Pδ = 0.001 ·
IM−2

Syntax

[<model name> = ] oprobit ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly



7.1. ORDERED PROBIT MODEL 143

•i The dependent variable, y, in the dataset used for estimation must contain only consecutive

integer values, with the numbering starting at 1. Observations with missing values in y are

dropped during estimation, but if a non-integer numerical value is encountered or if the

integer values are not consecutive (for example there are no observations for which yi = 2),

then an error is produced.

The optional arguments for the ordered Probit model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"m_delta" mean vector of the prior for δ ((M−2)×1 vector); the default value is 0M−2

"P_delta" precision matrix of the prior for δ ((M−2)×(M−2) symmetric and positive-
definite matrix); the default value is 0.001·IM−2

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
γ gamma_m vector of cutoff points (M−2)

Stored values and post-estimation analysis

If a left-hand-side id value is provided when an ordered Probit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and γ

x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

gamma_2,. . .,
gamma_{M-1}

vectors containing the draws from the posterior of the cutoff parameters,
for m = 2, . . . ,M−1

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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nburnin the number of burn-in draws per chain that were used when estimating
the model

ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

The ordered Probit model uses the mfx() function to calculate and report the marginal
effects of the independent variables on the probability of the response variable being in each
one of the M categories: Prob (y = m|x), for m = 1, 2, . . . ,M . Because the model calculates
only one type of marginal effects, the only valid value for the "type" option is 1. The generic
syntax for a statement involving the mfx() function after estimation of an ordered Probit model
is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset10 .csv ");

myData .constant = ones(rows(myData ), 1);

oprobit ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset10 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = oprobit ( y ∼ constant x1 x2 x3 x4 ,

"m_beta "=zeros (5,1) , "P_beta " = 0.01* eye (5,5) ,

"m_delta "=zeros (3,1) , "P_delta " = 0.1*eye (3,3) ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("point"="mean","model"=myModel );

mfx ("point"="median ","model "=myModel );
✝ ✆
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7.2 Ordered Logit model

Mathematical representation

y∗i = x′
iβ + εi, εi ∼ Logistic (0, 1)

yi =



















1 if γ0 < y∗i ≤ γ1
2 if γ1 < y∗i ≤ γ2
...

...
...

M if γM−1 < y∗i ≤ γM

(7.2)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can assume integer values
in the range 1, . . . ,M

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� the γs are parameters that represent the cutoff points between categories and they satisfy
the relation γ0 < γ1 < · · · < γM , with γ0 = −∞, γM = ∞ and, for identification
purposes, γ1 = 0; there are M−2 γs to be estimated

� following Albert & Chib (2001), to impose the inequality constraints on the γs the prob-
lem is re-parameterized using the 1-1 mapping:

δ2 = log (γ2 − γ1)
δ3 = log (γ3 − γ2)
... =

...
δM−1 = log (γM−1 − γM−2)

there are M−2 δs to be estimated and they are collected in an (M−2)× 1 vector δ

Priors

Parameter Probability density function Default hyperparameters

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0K , Pβ = 0.001 · IK
δ p (δ) = |Pδ|

1/2

(2π)
M−2

2

exp
{

− 1
2 (δ −mδ)

′ Pδ (δ −mδ)
}

mδ = 0M−2, Pδ = 0.001 ·
IM−2

Syntax

[<model name> = ] ologit ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly



146 CHAPTER 7. MODELS FOR ORDERED DATA

•i The dependent variable, y, in the dataset used for estimation must contain only consecutive

integer values, with the numbering starting at 1. Observations with missing values in y are

dropped during estimation, but if a non-integer numerical value is encountered or if the

integer values are not consecutive (for example there are no observations for which yi = 2),

then an error is produced.

The optional arguments for the ordered Logit model are:2

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"m_delta" mean vector of the prior for δ ((M−2)×1 vector); the default value is 0M−2

"P_delta" precision matrix of the prior for δ ((M−2)×(M−2) symmetric and positive-
definite matrix); the default value is 0.001·IM−2

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
γ gamma_m vector of cutoff points (M−2)

Stored values and post-estimation analysis

If a left-hand-side id value is provided when an ordered Logit model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and γ

x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-
ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

gamma_2,. . .,
gamma_{M-1}

vectors containing the draws from the posterior of the cutoff parameters,
for m = 2, . . . ,M−1

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model

2Optional arguments are always given in option-value pairs (eg. "chains"=3).
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nburnin the number of burn-in draws per chain that were used when estimating
the model

ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

The ordered Logit model uses the mfx() function to calculate and report the marginal effects
of the independent variables on the probability of the response variable being in each one of
the M categories: Prob (y = m|x), for m = 1, 2, . . . ,M . Because the model calculates only one
type of marginal effects, the only valid value for the "type" option is 1. The generic syntax for
a statement involving the mfx() function after estimation of an ordered Logit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset10 .csv ");

myData .constant = ones(rows(myData ), 1);

ologit ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset10 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = ologit ( y ∼ constant x1 x2 x3 x4,

"m_beta "=zeros (5,1) , "P_beta " = 0.01* eye (5,5) ,

"m_delta "=zeros (3,1) , "P_delta " = 0.1*eye (3,3) ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("point"="mean","model"=myModel );

mfx ("point"="median ","model "=myModel );
✝ ✆
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8.1 Poisson model

Mathematical representation

yi ∼ Poisson(λi) , λi = ex
′
iβ (8.1)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can assume non-negative
integer values

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)′ P (β −m)

}

m = 0K , P = 0.001 · IK

Syntax

[<model name> = ] poisson ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain non-negative

integer values. Observations with missing values in y are dropped during estimation, but if

a non-integer or negative numerical value is encountered, then an error is produced.

The optional arguments for the Poisson model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a Poisson model is created, then the following
results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

The Poisson model uses the mfx() function to calculate and report the marginal effects
of the independent variables on the expected value of the dependent variable, E (yi|xi) = λi.
Because the model calculates only one type of marginal effects, the only valid value for the "type"

option is 1. The generic syntax for a statement involving the mfx() function after estimation of
a Poisson model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

See the general documentation of the mfx() function (section B.14) for details on the other
optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset9 .csv ");

myData .constant = ones(rows(myData ), 1);

poisson ( y ∼ constant x1 x2 x3 x4 );
✝ ✆
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Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset9 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = poisson ( y ∼ constant x1 x2 x3 x4 ,

"m"=zeros (5,1) , "P" = 0.01* eye (5,5) ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("point"="mean","model"=myModel );

mfx ("point"="median ","model "=myModel );
✝ ✆
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8.2 Negative-Binomial model

Mathematical representation

yi ∼ NBinom(pi, γ) , pi =
µi

µi+γ and µi = ex
′
iβ (8.2)

With this parameterization, E (yi|xi) = µi and V (yi|xi) = µi +
µ2
i

γ

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can assume non-negative
integer values

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� γ is the over-dispersion parameter and as γ → ∞, the negative-Binomial model tends
towards the Poisson model

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK
γ p (γ) =

b
aγ
γ

Γ(aγ)
γaγ−1e−γbγ aγ = 0.001, bγ = 0.001

Syntax

[<model name> = ] nbinom ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain non-negative

integer values. Observations with missing values in y are dropped during estimation, but if

a non-integer or negative numerical value is encountered, then an error is produced.

The optional arguments for the negative-Binomial model are:2

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42

2Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_gamma" shape parameter of the prior for γ (positive number); the default value is
0.001

"b_gamma" rate parameter of the prior for γ (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
γ gamma over-dispersion parameter

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a negative-Binomial model is created, then the
following results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and γ
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

gamma vector containing the draws from the posterior of γ
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

The negative-Binomial model uses the mfx() function to calculate and report the marginal
effects of the variables in the x list on:

� the expected value of the dependent variable: ∂ E(yi|xi)
∂xik

� the variance of the dependent variable: ∂ V(yi|xi)
∂xik

These two types of marginal effects can be requested by setting the "type" argument of the
mfx() function equal to 1 or 2, respectively. The generic syntax for a statement involving the
mfx() function after estimation of a negative-Binomial model is:
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mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=2 [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculation of the marginal effects on E (y), and on V (y), respectively. The default value
of the "type" option is 1. See the general documentation of the mfx() function (section B.14)
for details on the other optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset9 .csv ");

myData .constant = ones(rows(myData ), 1);

nbinom ( y ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset9 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = nbinom ( y ∼ constant x1 x2 x3 x4,

"m"=zeros (5,1) , "P" = 0.1* eye (5,5) ,

"a_gamma "=0.01 , "b_gamma "=0.1,

"burnin "=10000 , "draws "=30000 , "thin"=3, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("type"=1,"point"="median ","model"=myModel );

mfx ("type"=2,"point"="median ","model"=myModel );
✝ ✆
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9.1 Type I Tobit

Mathematical representation

y∗i = x′
iβ + εi, εi ∼ N

(

0, 1
τ

)

yi =







ℓ if y∗i ≤ ℓ
y∗i if ℓ < y∗i < u
u if y∗i ≥ u

(9.1)

� the model is estimated using N observations

� yi is the value of the dependent variable for observation i and it can assume values in
the interval [ℓ, u]; ℓ could be −∞ or u +∞

� y∗i is unobserved if y∗i 6∈ [ℓ, u]

� xi is a K×1 vector that stores the values of the K independent variables for observation
i

� β is a K×1 vector of parameters

� τ is the precision of the error term: σ2
ε = 1

τ

Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)

′
P (β −m)

}

m = 0K , P = 0.001 · IK
τ p (τ) =

baτ
τ

Γ(aτ )
τaτ−1e−τbτ aτ = 0.001, bτ = 0.001

Syntax

[<model name> = ] tobitI ( y ∼ x1 x2 ... xK [, <options> ] );

where:

� y is the dependent variable name, as it appears in the dataset used for estimation

� x1 x2 . . . xK is a list of the K independent variable names, as they appear in the dataset
used for estimation; when a constant term is to be included in the model, this must be
requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain values between

the lower and upper censoring points. Observations with missing values in y are dropped

during estimation, but if a numerical value beyond the provided bounds is encountered, then

an error is produced.

The optional arguments for the type I Tobit model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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"seed" value of the seed for the random-number generator (positive integer); the
default value is 42

Model specification

"lb" lower censoring point (it could be set equal to -inf if the dependent variable
is not censored from below); the default value is 0

"ub" upper censoring point (it could be set equal to inf if the dependent variable
is not censored from above); the default value is +∞

Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"a_tau" shape parameter of the prior for τ (positive number); the default value is
0.001

"b_tau" rate parameter of the prior for τ (positive number); the default value is 0.001
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables
τ tau precision parameter of the error term, εi
σε sigma_e standard deviation of the error term: σε = 1/τ1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a type I Tobit model is created, then the following
results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β and τ
x1,. . .,xK vectors containing the draws from the posterior of the parameters associ-

ated with variables x1,. . .,xK (the names of these vectors are the names of
the variables that were included in the right-hand side of the model)

tau vector containing the draws from the posterior of τ
lb lower censoring point
ub upper censoring point
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):
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� diagnostics()

� test()

� pmp()

� mfx()

The type I Tobit model uses the mfx() function to calculate and report the marginal effects
of the variables in the x list on:

� the expected value of the observed dependent variable: ∂ E(yi|xi)
∂xik

� the expected value of the observed dependent variable, conditional on this being uncen-

sored: ∂ E(yi|xi,ℓ<yi<u)
∂xik

� the probability of no censoring: ∂ Prob(ℓ<yi<u|xi)
∂xik

The three types of marginal effects can be requested by setting the "type" argument of the mfx()

function equal to 1, 2 or 3. The generic syntax for a statement involving the mfx() function
after estimation of a type I Tobit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

mfx ( "type"=2 [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=3 [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculation of the marginal effects on E (y), on E (y|ℓ < y < u), and on Prob (ℓ < y < u),
respectively. The default value of the "type" option is 1. See the general documentation of the
mfx() function (section B.14) for details on the other optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset8 .csv ");

myData .constant = ones(rows(myData ), 1);

tobitI ( y1 ∼ constant x1 x2 x3 x4 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset8 .csv ");

myData .constant = ones(rows(myData ), 1);

myData .y1 = -myData .y1;

myModel = tobitI ( y1 ∼ constant x1 x2 x3 x4 ,

"lb"=-inf , "ub"=0,

"m"=ones(5,1) , "P" = 0.1* eye (5,5) ,

"a_tau"=0.01 , "b_tau "=0.01 ,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("type"=1,"point"="mean","model "=myModel );

mfx ("type"=2,"point"="mean","model "=myModel );

mfx ("type"=3,"point"="mean","model "=myModel );
✝ ✆
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9.2 Type II Tobit

Mathematical representation

y∗i = x′
iβ + εi

yi =

{

y∗i if si = 1
− if si = 0

s∗i = z′iδ + vi

si =

{

1 if s∗i > 0
0 if s∗i ≤ 0

(9.2)

with:
[

εi
vi

]

∼ N
(

0,Ω−1
)

, where Ω−1 ≡ Σ =

[

ξ + γ2 γ
γ 1

]

(9.3)

� the model is estimated using N observations, for N1 of which the outcome variable is
observed (si = 1) and for the remaining N0 the outcome variable is missing (si = 0)

� yi is the value of the dependent variable in the outcome equation for observation i and
it is observed only if si = 1

� s∗i is the value of the latent dependent variable in the selection equation for observation
i

� xi is a K×1 vector that stores the values of the K independent variables in the outcome
equation for observation i

� zi is an L×1 vector that stores the values of the L independent variables in the selection
equation for observation i

� the same variable could appear in both xi and zi
� β is a K×1 vector of parameters

� δ is an L×1 vector of parameters

� Ω is the precision matrix of the error vector,
[

εi vi
]′

and Σ is the covariance matrix of
the error vector

� ξ is the variance of εi conditional on vi
� γ is the covariance of εi and vi

Priors

Parameter Probability density function Default hyperparameters

β p (β) =
|Pβ |

1/2

(2π)K/2 exp
{

− 1
2 (β −mβ)

′
Pβ (β −mβ)

}

mβ = 0K , Pβ = 0.001 · IK
δ p (δ) = |Pδ|

1/2

(2π)L/2 exp
{

− 1
2 (δ −mδ)

′
Pδ (δ −mδ)

}

mδ = 0K , Pδ = 0.001 · IL
ξ p

(

1
ξ

)

=
b
aξ
ξ

Γ(aξ)

(

1
ξ

)aξ−1

e−bτ/ξ aξ = 0.001, bξ = 0.001

γ p (γ|ξ) =
(

tγ
ξ

)1/2

(2π)1/2

{

− tγ
2ξ (γ −mγ)

2
}

mγ = 0, tγ = 1

•i Because ξ is a variance parameter, a Gamma prior is placed on the corresponding precision

parameter, 1

ξ
. This is equivalent to placing and inverse-Gamma prior on ξ directly.

•i The prior for γ depends on the value of ξ: given ξ, γ follows a Normal distribution with

mean mγ and precision
tγ
ξ
. This is done so that the prior uncertainty around γ scales along

with the prior uncertainty around ξ.
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Syntax

[<model name> = ] tobitII ( y ∼ x1 x2 ... xK | z1 z2 . . . zL [,<options> ] );

where:

� y is the dependent variable name in the outcome equation, as it appears in the dataset
used for estimation

� x1 x2 . . . xK is a list of the K independent variable names in the outcome equation, as
they appear in the dataset used for estimation; when a constant term is to be included
in the model, this must be requested explicitly

� z1 z2 . . . zL is a list of the L independent variable names in the selection equation, as
they appear in the dataset used for estimation; when a constant term is to be included
in the model, this must be requested explicitly

•i The dependent variable, y, in the dataset used for estimation must contain both numerical

values and missing values (“nans”). The values of the variables in the x list are not used

during estimation and they could be missing. However, observations with missing values in

the z list are dropped prior to estimation.

The optional arguments for the type II Tobit model are:2

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m_beta" mean vector of the prior for β (K×1 vector); the default value is 0K

"P_beta" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"m_delta" mean vector of the prior for δ (L×1 vector); the default value is 0L

"P_delta" precision matrix of the prior for δ (L×L symmetric and positive-definite
matrix); the default value is 0.001·IL

"a_xi" shape parameter of the prior for 1
ξ (positive number); the default value is

0.001
"b_xi" rate parameter of the prior for 1

ξ (positive number); the default value is 0.001

"m_gamma" mean of the prior for γ; the default value is 0
"t_gamma" precision scaling parameter of the prior for γ (positive number); the default

value is 1
Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

2Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Reported Parameters
β variable_name vector of parameters associated with the independent variables in

the outcome equation
δ variable_name vector of parameters associated with the independent variables in

the selection equation
ξ xi conditional variance parameter of the error term in the outcome

equation, εi
γ gamma covariance of the error terms in the outcome and selection equa-

tions
σε sigma_e standard deviation of the error term in the outcome equation:

σε = ξ1/2

ρ rho correlation coefficient between the error terms in the outcome and
selection equations: ρ = γ/ξ1/2

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a type II Tobit model is created, then the following
results are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β, δ, ξ and γ
y$x1,. . .,y$xK vectors containing the draws from the posterior of the parameters asso-

ciated with variables x1,. . .,xK (the names of these vectors are the names
of the variables that were included in the right-hand side of the outcome
equation of the model, prepended by y$, where y is the name of the depen-
dent variable; this is done so that the samples on the parameters associated
with a variable that appears in both x and z lists can be distinguished)

s$z1,. . .,s$zL vectors containing the draws from the posterior of the parameters associ-
ated with variables z1,. . .,zL (the names of these vectors are the names of
the variables that were included in the z list, in the right-hand side of the
selection equation of the model, prepended by s$; this is done so that the
samples on the parameters associated with a variable that appears in both
x and z lists can be distinguished)

xi vector containing the draws from the posterior of ξ
gamma vector containing the draws from the posterior of γ
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� mfx()

Usually the marginal effects of primary importance in a type II Tobit model are the effects
of changes in the independent variables in the outcome equation on the expected value of the
dependent variable in the same equation, for the entire population (whether selected or not).
These effects, at least for variables included linearly in the model, are the corresponding βs.
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Nevertheless, there are two additional types of marginal effects that could be of interest and
which are not linear functions of the model’s parameters. The type II Tobit model uses the
mfx() function to calculate and report the marginal effects of:

� the variables in the z list on the probability of selection: ∂ Prob(si=1|zi)
∂ziℓ

� the variables in the x list on the expected value of the response variable for the part of

the population that is selected3: ∂ E(yi|xi,zi,si=1)
∂xik

The two types of marginal effects can be requested by setting the "type" argument of the
mfx() function equal to 1 or 3. The generic syntax for a statement involving the mfx() function
after estimation of a type II Tobit model is:

mfx ( ["type"=1] [, "point"=<point of calculation>] [, "model"=<model name>] );

and:

mfx ( "type"=2 [, "point"=<point of calculation>] [, "model"=<model name>] );

for calculation of the marginal effects on Prob (s = 1) and on E (y|s = 1). The default value of
the "type" option is 1. See the general documentation of the mfx() function (section B.14) for
details on the other optional arguments.

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset8 .csv ");

myData .constant = ones(rows(myData ), 1);

tobitII ( y2 ∼ constant x1 x2 x3 x4 | constant x1 x2 x3 z1 z2 );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset8 .csv ");

myData .constant = ones(rows(myData ), 1);

myModel = tobitII ( y2 ∼ constant x1 x2 x3 x4 | constant x1 x2 x3 x4 z1 z2 ,

"m_beta "=ones (5,1) , "P_beta " = 0.1*eye (5,5) ,

"m_delta "=ones(7,1) , "P_delta " = 0.1* eye (7,7) ,

"a_xi"=0.01 , "b_xi"=0.01 , "m_gamma "=0.0, "t_gamma "=0.1,

"burnin "=10000 , "draws "=40000 , "thin"=4, "chains "=2,

"logML_CJ " = true, "dataset "=myData );

diagnostics ("model "=myModel );

mfx ("type"=1,"point"="mean","model "=myModel );

mfx ("type"=2,"point"="mean","model "=myModel );
✝ ✆

3If the k-th independent variable in the outcome equation does not appear also as an independent variable
in the selection equation then its marginal effect is simply βk.
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10.1 Simple Seemingly Unrelated Regressions (SUR)

Mathematical representation

y1i = x′
1iβ1 + ε1i

y2i = x′
2iβ2 + ε2i

...
...

...
yMi = x′

MiβM + εMi

� the model consists of M equations

� the model is estimated using N observations (i = 1, 2, . . . , N)

� ymi is the value of equation m’s dependent variable for observation i

� xmi is a Km×1 vector that stores the values of the Km independent variables for obser-
vation i, as they appear in equation m

� the same independent variable can appear in multiple equations, associated with different
coefficients

� βm is a Km×1 vector of parameters associated with equation m’s independent variables

� in total, there are K=
M
∑

m=1
Km β slope parameters to be estimated

� the M error terms jointly follow a multivariate Normal distribution with mean 0 and
precision matrix Ω

An equivalent and more compact representation of the model is:

yi = Xiβ + εi, εi ∼ N
(

0,Ω−1
)

where:

yi
M×1

=











y1i
y2i
...

yMi











, Xi
M×K

=











x′
1i 0 . . . 0
0 x′

2i . . . 0
...

...
. . .

...
0 0 . . . x′

Mi











, β
K×1

=











β1

β2
...

βM











, εi
M×1

=











ε1i
ε2i
...

εMi











Priors

Parameter Probability density function Default hyperparameters

β p (β) = |P|1/2

(2π)K/2 exp
{

− 1
2 (β −m)′ P (β −m)

}

m = 0K , P = 0.001 · IK

Ω p (Ω) = |Ω|
n−M−1

2 |V−1|n/2

2nM/2ΓM(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

n = M2, V = 100
M · IM

Syntax

[<model name> = ] sur ( {

y1 ∼ x11 x12 ... x1K1,

y2 ∼ x21 x22 ... x2K2,

...,

yM ∼ xM1 xM2 ... xMKM }

[, <options> ]
);

where:

� y1, y2, . . . , yM are the dependent variable names, as they appear in the dataset used for
estimation
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� xm1 xm2 . . . xmKm is a list of the Km independent variable names for equation m =
1, 2, . . . ,M , as they appear in the dataset used for estimation; when a constant term
is to be included in an equation, this must be requested explicitly; M such lists must be
provided

The optional arguments for the Seemingly Unrelated Regressions model are:1

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for β (K×1 vector); the default value is 0K

"P" precision matrix of the prior for β (K×K symmetric and positive-definite
matrix); the default value is 0.001·IK

"V" scale matrix of the prior for Ω (M×M symmetric and positive-definite matrix);
the default value is 100

M ·IM
"n" degrees-of-freedom parameter of the prior for Ω (real number greater than or

equal to M); the default value is M2

Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
β variable_name vector of parameters associated with the independent variables;

these are broken into groups according to the equation in which
the independent variables appear

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a SUR model is created, then the following results
are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of β (across all equations,
starting from the first equation) and the unique elements of Ω

ym$xm1,. . .,
ym$xmKm

vectors containing the draws from the posterior of the parameters associ-
ated with variables xm1,. . .,xmKm, for m = 1, 2, . . . ,M (the names of these
vectors are the names of the variables that were included in the right-
hand side of equation m, prepended by ym$, where ym is the name of the
dependent variable in equation m; this is done so that the samples on
the parameters associated with a variable that appears in more than one
equations can be distinguished)

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Omega_i_j vectors containing the draws from the posterior of the unique elements of

Ω; because Ω is symmetric, only (M−1)M
2 +M of its elements are stored

(instead of all M2 elements); i and j index the row and column of Ω,
respectively, at which the corresponding element is located

Omega M×M matrix that stores the posterior mean of Ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset5 .csv ");

myData .constant = ones(rows(myData ), 1);

model1 = sur ( {

y1 ∼ constant x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ,

y2 ∼ constant x1 x2 x3,

y3 ∼ constant x1 x2 x3

} );
✝ ✆



10.1. SIMPLE SEEMINGLY UNRELATED REGRESSIONS (SUR) 169

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset5 .csv ");

myData .constant = ones(rows(myData ), 1);

model1 = sur ( {

y1 ∼ constant x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ,

y2 ∼ constant x1 x2 x3,

y3 ∼ constant x1 x2 x3

}, "logML_CJ "=true );

print(mean([ model1 .y1$x1 -model1 .y2$constant ,

model1 .y1$x2 -model1 .y3$constant ]));

model2 = sur ( {

y1 ∼ constant x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ,

y2 ∼ constant x1 x2 x3,

y3 ∼ constant x1 x2 x3

},

"constraints " = {

y1$x1 -y2$constant =0, y1$x5 -0.5* y2$x1 =0, y1$x6 -y2$x2 =0,

y1$x7 -y2$x3 =0,

y1$x2 -y3$constant =0, y1$x6 -y3$x1 =0, y1$x8 -0.5* y3$x2 =0,

y1$x9 -y3$x3 =0,

},

"Xi" = 1e7*eye (8,8) , "logML_CJ "=true );

print(mean([ model2 .y1$x1 -model2 .y2$constant ,

model2 .y1$x2 -model2 .y3$constant ]));

pmp ( {model1 , model2 } );

pmp ( {model2 , model2 }, "logML_CJ " = true);
✝ ✆
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11.1 Vector Autoregressive (VAR) model for time-series
data

Mathematical representation

yt = A0wt +

p
∑

j=1

Ajyt−j + εt, εt ∼ N
(

0,Ω−1
)

where:

� the model contains M endogenous variables (ys)

� the model is estimated using T observations (t = 1, 2, . . . , T )

� yt is an M × 1 vector, which contains the values of the M endogenous variables at time t

� wt is a K×1 vector, which contains the values of the exogenous variables (common to
all equations) at time t

� A0 is an M ×K matrix of parameters associated with the exogenous variables

� Aj is an M ×M matrix of parameters, j = 1, 2 . . . , p

� in total, there are L=(M ·p+K)·M slope parameters to be estimated (in all As)

� εt is an M×1 vector of errors at time t, which follows a multivariate Normal distribution
with mean 0 and precision matrix Ω

With T time observations, an equivalent representation of the model is:

Y = XA+E

where:

Y
(T−p)×M

=











y′
p+1

y′
p+2
...
y′
T











E
(T−p)×M

=











ε′p+1

ε′p+2
...
ε′T











A
(M·p+K)×M

=











A′
0

A′
1
...

A′
p











and:

X
(T−p)×(K+M·p)

=











w′
p+1 y′

p y′
p−1 . . . y′

1

w′
p+2 y′

p+1 y′
p . . . y′

2
...

...
...

. . .
...

w′
T y′

T−1 y′
T−2 . . . y′

T−p











In this representation the endogenous variables are expanded over the columns of Y and the
time observations are stacked one under the other.

Yet another representation is:

y = (IM ⊗X)α+ ε, ε ∼ N
(

0, (Ω⊗ IM )
−1

)

where:

� y is the (T − p) ·M × 1 obtained by stacking the columns of Y

� ε is the (T − p) ·M × 1 obtained by stacking the columns of E

� α is the (M ·p+K)·M×1 vector obtained by stacking the columns of A

In this representation the data are first stacked over time and then by variable.
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Priors

Parameter Probability density function Default hyperparameters

α p (α) = |P|1/2

(2π)L/2 exp
{

− 1
2 (α−m)′ P (α−m)

}

m = 0L, P = 0.001 · IL

Ω p (Ω) = |Ω|
n−M−1

2 |V−1|n/2

2nM/2ΓM(n2 )
exp

{

− 1
2 tr

(

V−1Ω
)}

n = M2, V = 100
M · IM

Syntax

[<model name> = ] varm( { y1, y2 , ..., yM } [ ∼ w1 w2 ... wK ] [, <options> ] );

where:

� y1, y2, . . . , yM are the names of the endogenous variables, as they appear in the dataset
used for estimation

� w1 w2 . . . wK is a list of the K exogenous variable names, as they appear in the dataset
used for estimation; these variables will be included in all equations, but if there is need
to restrict the model so that of any of them do not appear in an equation, this can be
achieved by restricting the associated parameters in the prior; when a constant term is
to be included in the model, this must be requested explicitly

•i Before using the varm() function the dataset used for estimation must be declared as a

time-series dataset using the set_ts() function (see section B.13).

The optional arguments for the vector autoregressive model are:1

Specification of lags

"lags" a vector of integers (either row or column vector) indicating the lags of the
endogenous variables to be included in the right-hand side of the model; for
example, if this vector is set equal to [1, 4, 9], then the 1st, 4th and 9th lags
are included; the default value is 1, in which case, only the first lag of all
endogenous are included

Gibbs parameters

"chains" number of chains to run in parallel (positive integer); the default value is 1
"burnin" number of burn-in draws per chain (positive integer); the default value is

10000
"draws" number of retained draws per chain (positive integer); the default value is

20000
"thin" value of the thinning parameter (positive integer); the default value is 1
"seed" value of the seed for the random-number generator (positive integer); the

default value is 42
Hyperparameters

"m" mean vector of the prior for α (L×1 vector); the default value is 0L

"P" precision matrix of the prior for α (L×L symmetric and positive-definite
matrix); the default value is 0.001·IL

"V" scale matrix of the prior for Ω (M×M symmetric and positive-definite matrix);
the default value is 100

M ·IM
"n" degrees-of-freedom parameter of the prior for Ω (real number greater than or

equal to M); the default value is M2

1Optional arguments are always given in option-value pairs (eg. "chains"=3).
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Dataset and log-marginal likelihood

"dataset" the id value of the dataset that will be used for estimation; the default value
is the first dataset in memory (in alphabetical order)

"logML_CJ" boolean indicating whether the Chib (1995)/Chib & Jeliazkov (2001) approx-
imation to the log-marginal likelihood should be calculated (true|false); the
default value is false

Reported Parameters
α variable_name vector of parameters associated with the exogenous variables and

the lags of the endogenous variables; these are broken into groups
according to the equation in which the variables appear and the
parameters associated with the exogenous variables are listed first

Stored values and post-estimation analysis

If a left-hand-side id value is provided when a VAR model is created, then the following results
are saved in the model item and are accessible via the ‘.’ operator:

Samples a matrix containing the draws from the posterior of α (across all equations,
starting from the first equation) and the unique elements of Ω

ym$w1,. . .,ym$wK vectors containing the draws from the posterior of the parameters asso-
ciated with the exogenous variables w1,. . .,wK, for m = 1, 2, . . . ,M (the
names of these vectors are the names of the exogenous variables that were
included in the model, prepended by ym$, where ym is the name of the
dependent variable in equation m)

ym$yl_tms,. . . vectors containing the draws from the posterior of the parameters associ-
ated with the lags of the endogenous variables for m, l = 1, 2, . . . ,M (the
names of these vectors are the names of the exogenous variables, appended
by _tms, where s is the sth lag, and prepended by ym$, where ym is the name
of the dependent variable in equation m)

Omega_i_j vectors containing the draws from the posterior of the unique elements of

Ω; because Ω is symmetric, only (M−1)M
2 +M of its elements are stored

(instead of all M2 elements); i and j index the row and column of Ω,
respectively, at which the corresponding element is located

Omega M×M matrix that stores the posterior mean of Ω
logML the Lewis & Raftery (1997) approximation of the log-marginal likelihood
logML_CJ the Chib (1995)/Chib & Jeliazkov (2001) approximation to the log-

marginal likelihood; this is available only if the model was estimated with
the "logML_CJ"=true option

nchains the number of chains that were used to estimate the model
nburnin the number of burn-in draws per chain that were used when estimating

the model
ndraws the total number of retained draws from the posterior (=chains · draws)
nthin value of the thinning parameter that was used when estimating the model
nseed value of the seed for the random-number generator that was used when

estimating the model

Additionally, the following functions are available for post-estimation analysis (see section
B.14):

� diagnostics()

� test()

� pmp()

� forecast()

� irf()
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Examples

Example 1
✞ ☎
myData = import("$BayESHOME /Datasets /dataset6 .csv ", ",");

myData .constant = 1;

set_ts ( time , "dataset "=myData );

varm( {y1 ,y2 ,y3} ∼ constant w );
✝ ✆

Example 2
✞ ☎
myData = import("$BayESHOME /Datasets /dataset6 .csv ", ",");

myData .constant = 1;

set_ts ( time , "dataset "=myData );

myModel = varm( {y1 ,y2 ,y3} ∼ constant w );

forecast ( "horizon "=10, "model "=myModel );

irf ( "horizon "=20, "model"=myModel );
✝ ✆
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Appendix A

Installation Guide

A.1 Installation under Microsoft® Windows®

The Microsoft® Windows® installer is a self extracting executable named BayES WinXX.exe,
where ‘XX’ could be either ‘32’ or ‘64’, for 32-bit and 64-bit machines, respectively. To initiate
the installation process double-click on the installer and accept any prompts from the system.
After extracting the contents of the archive you should be able to see the first page of the setup
wizard (see figure below). From now on you should follow the instructions on this wizard:

1. Click on the Next> button on the welcome page of the wizard to proceed:

2. Read the license agreement and either check the “I Agree” checkbox and click Next> to
proceed or Cancel to cancel the installation process:

177
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3. On the next screen you need to provide the location where BayES will place its system
files (libraries, icons, initialization files, etc.), documents, datasets and sample script files.
The location provided must exist on the machine’s file system and the user must have
write access on it. If a location is chosen for installation on which you do not have write
permissions (for example C:\Program Files), the installer will issue a warning and a
prompt to either:

(a) pick a different installation location, or

(b) quit the installer and rerun it with administrative rights1

When BayES is installed in a system folder, users without administrative rights will not
have permission to alter any of its files. This is reasonable for most purposes, as it keeps
BayES’ system files secure. However, a user without administrative rights will not be
able to make persistent changes to the initialization files (for example, to store his/her
preferences regarding prompting to save files on exit or specify the location of external
binaries). If a system administrator wants to make such changes then he/she should run
BayES as an administrator.

There are three additional options available on this page:

� if the first checkbox is checked the installer will attempt to create a shortcut to the
BayES executable on the system’s desktop

� if the second checkbox is checked the installer will attempt to create a shortcut to
the BayES executable on the system’s “start” menu

� if the third checkbox is checked the installer will attempt to make BayES accessible
from the command line. This means that BayES will be available from the system’s
shell by typing BayES, optionally followed by a script file to be executed.

Finally, click on Install to get the installer to commit changes to the system.

4. Once the installation completes you should see the following screen. Look at the install
log on this page in case something went wrong during the installation and act accordingly.
Click Close to quit the installer. If everything went fine you should now be ready to use
BayES.

1To run the installer with administrative rights right-click on the BayES WinXX.exe file and pick “Run as

administrator” from the pop-up menu.
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A.2 Installation under Linux

The Linux installer is a self-extracting binary file named BayES LinuxXX.bsx, where ‘XX’ could
be either ‘32’ or ‘64’, for 32-bit and 64-bit machines, respectively. The installation process can
be initiated after making this file executable using either the system’s command shell or its
file browser:

� from the system’s command shell change directory to where the installer is located and
execute: chmod u+x BayES LinuxXX.bsx (replacing ‘XX’ with either ‘32’ or ‘64’), or

� from the system’s file browser navigate to the location where the installer is located and
right-click on it. In the pop-up menu click on Properties and in the pop-up window
select the option to make this file executable for the current user.2

Next, run ./BayES LinuxXX.bsx from the command shell (replacing ‘XX’ with either ‘32’ or ‘64’)
This should take you to the first screen of the setup wizard (see the following figure). From
now on you should follow the instructions on the setup wizard:

1. Click on the Next> button on the welcome page of the wizard:

2Depending on the Linux distribution installed on the system, the steps may differ, but most modern Linux
distributions that support a GUI, allow making files executable from the GUI.
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2. Read the license agreement and either check the “I Agree” checkbox and click Next> to
proceed or Cancel to cancel the installation process:

3. On the next screen you need to provide a location where BayES will place its documents,
datasets and sample script files. Under Linux the BayES system files (libraries, icons
and initialization files) are always placed in the user’s home directory in a folder called
.BayES (hidden).

There are three additional options available on this page:

� if the first checkbox is checked the installer will attempt to create a shortcut to the
BayES binary on the system’s desktop3

� if the second checkbox is checked the installer will attempt to create a shortcut to
the BayES binary on the system’s “start” menu

� if the third checkbox is checked the installer will attempt to make BayES accessible
from the command line. This means that BayES will be available from the system’s
shell by typing BayES, optionally followed by a script file to be executed. This is
achieved by creating an entry in the user’s .bashrc file. If such a file does not
already exist, the installer will create one.

Finally, click on Install to get the installer to commit changes to the system.

3Under some Linux distributions you may have to “trust and run” the desktop file the first time you invoke
BayES through it.
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4. Once the installation completes you should see the following screen. Look at the install
log on this page in case something went wrong during installation and act accordingly.
Click Close to quit the installer.

•i In most Linux systems the user needs to either logout and login again for all changes to

take effect or issue the command:

source ∼/.bash rc

from the system’s command shell.

A.3 Installation under macOS

The macOS installer is a self-extracting binary file named BayES macOS64.bsx. The installation
process can be initiated by opening a terminal window, navigating to the location where the
installer was downloaded (using the cd ... command) and issuing the command:

sh ./BayES macOS64.bsx

This should fire-up the setup wizard and take you to its first screen (see the following figure).
From now on you should follow the instructions on the setup wizard:

1. Click on the Next> button on the welcome page of the wizard:
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2. Read the license agreement and either check the “I Agree” checkbox and click Next> to
proceed or Cancel to cancel the installation process:

3. On the next screen you need to provide a location where BayES will place its documents,
datasets and sample script files. Under macOS the BayES system files (libraries, icons
and initialization files) are always placed in the user’s Applications directory, in a folder
called BayES. This automatically makes BayES accessible via the Launchpad.

There are three additional options available on this page:

� if the first checkbox is checked the installer will attempt to create a shortcut to the
BayES binary on the system’s desktop (this option is disabled for macOS systems
and no such shortcut on the desktop is created)

� if the second checkbox is checked the installer will create a shortcut to the BayES

binary on the Launchpad (this option is disabled for macOS systems and BayES is
always made accessible via the Launchpad)

� if the third checkbox is checked the installer will attempt to make BayES accessible
from the command line. This means that BayES will be available from the system’s
shell by typing BayES, optionally followed by a script file to be executed. This is
achieved by creating an entry in the user’s .bash profile file. If such a file does
not already exist, the installer will create one.

Finally, click on Install to get the installer to commit changes to the system.
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4. Once the installation completes you should see the following screen. Look at the install
log on this page in case something went wrong during installation and act accordingly.
Click Close to quit the installer. If everything went fine you should now be ready to use
BayES.

•i If BayES was requested during installation to be made globally accessible through the com-

mand line the user needs to either logout and login again for this to take effect or issue the

command:

source ∼/.bash profile

on the terminal window.

A.4 Unstalling BayES

To remove BayES from the system go to the directory where BayES was installed and double-
click on the Uninstall BayES link.4 After receiving confirmation from the user, the wizard
will initiate the removal process. If the BayES installer had created an entry in the system’s
“start” menu during installation (under Microsoft® Windows® only), an Uninstall BayES

option should also be available there. If BayES was installed in a system folder the uninstaller
must be run with elevated rights (as an administrator).

4You can get the location of the installation directory by running print("$BayESHOME"); from the BayES

script editor window. The installation directory will be printed on BayES’ main console.
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Appendix B

List of functions and commands

Statements in this appendix are presented using the following generic syntax:

[A, B] = functionName(X [, Y, Z ]);

Function arguments given in italics inside thin square brackets ([...]) are optional. The right-
hand side of the statement given above indicates that function functionName takes one mandatory
argument, X, and two optional arguments, Y and Z. The order in which these optional arguments
appear in the function call matters: to pass Z to functionName one must also pass Y.

Functions could have no return value (eg. setwd), one return value (eg. exp) or more than
one return values (eg. eig). When a function has only one return value, then this value must
not be enclosed in square brackets in the left-hand side of the calling statement. If a function
has more than one return values, but only the first one is required, this can be requested using:

A = functionName(X [, Y, Z ]);

As with optional arguments, the order in which optional return values appear in a function
call matters: to get B by calling functionName, A must be returned as well, as shown in the first
statement above.

B.1 Directory statements

Directory statements are used to set the working directory for BayES and the installation
directories of programs for which BayES provides interfaces. Under Microsoft® Windows®

systems the directory separator can be either forward slash (/) or a backslash (\). However,
BayES functions that return directory names will use forward slash separators, even under
Microsoft® Windows® systems.

Syntax Arguments and performed function
setwd(d); Sets the current working directory to the value pro-

vided in d. Specification of the working directory al-
lows calling user-defined functions from the directory
and loading/saving results without needing to quote
full paths.
� d must be a string
� d could be absolute (eg. "C:/MyFiles/MyFolder")
or relative to the current working directory (eg.
"./MyFolder")

d = getwd(); d is a string with value equal to the current working
directory.
� Even under Microsoft® Windows®systems the
function returns a string that uses forward slash
(/) to separate directories

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
setbinary(<program name>, s); This function sets the location and name of the ex-

ecutable/binary file of external programs for which
BayES provides interfaces.
� <program name> must one of the following ids:

– jags

– openbugs

– rproject

– stata

– matlab

– octave

� s must be a string containing the full absolute path
to the respective program’s binary file, the name of
the binary file and its extension

B.2 Console statements

The following statements are used to print on the BayES console or clear the console.

Syntax Arguments and performed function
clc(); Clears the BayES console.

� This function has no effect if BayES is run without
the GUI (batch mode)

print( A [, c ]); Prints A on the BayES console. A could be any of the
following data types:

� matrix
� dataset

� model
� structure

� string

If A is a string and c (if provided) is a 1×3 vector of
values between 0 and 1, then the string is printed on
the BayES console in the color defined by the values
in c, in a red-green-blue (rgb) scale.
If A is not a string and c is provided, then c is ignored
and a warning is printed on the console.

who([A]); When the function is called without an argument it
prints on the BayES console a list of the id values of
items in memory in the current workspace. If A is
provided then it prints a list of the elements/variable
names of A. These items/elements are reported first
by data type in the following order:

1. matrices
2. datasets

3. models
4. structures

5. strings

and then alphabetically, according to their id value.
� A must be a dataset, model or structure
� if A is a dataset then the function prints a list of the
variable names containted in A

B.3 Elapsed-time statements

The following statements are used to measure and report the time that elapses between two
points (defined by the user) in the execution of code.
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Syntax Arguments and performed function
tic([s]); Starts a timer that can be used to measure the amount

of time that elapses until a toc([s]); statement is en-
countered. If s is provided then the corresponding call
to toc() must use the same string as identifier.
� s must be a string

toc([s]); Prints information on the time that elapsed between
a call to the tic() function and the current call to
toc(). If s is provided then it must be the same as
the string used in the call of a previous tic. In this
case toc(s); prints the amount of time that elapsed
between the tic(s); and the toc(s); statements. If toc
is called without an argument then it prints the time
that elapsed from the previous call to tic() (without
an argument as well).
With this scheme BayES allows setting multiple timers
and periodically reporting the time that elapsed when
executing statements.
All set tics are cleared once the BayES parser com-
pletes a job.
� s must be a string

ctic([s]); To economize on memory and CPU resources, BayES
allows only a limited number of tics to be set simul-
taneously. When a tic that was previously set by the
user is not expected to be used again, a call to ctic()

should be made to clear it from memory and make
space for other tics to be set. If the function is called
without an argument, then it clears the last tic which
was defined without an argument.
All set tics are cleared once the BayES parser com-
pletes a job.
� s must be a string

B.4 Import, export and memory management

The following statements are used to clear items from memory, save or load workspaces, and
import or export items from/to text files.

Syntax Arguments and performed function
clear(A); Clears item with id value A from memory. A could be

any of the following data types:

� matrix
� dataset

� model
� structure

� string

or the keywords:

� all

� matrices

� datasets

� models

� structures

� strings

The statement clear(all); clears all items from mem-
ory, while, for example, clear(matrices); clears all ma-
trices from memory.

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
save(s); Saves the current workspace (all items in memory) to

the file specified by s.
� s must be a string containing the directory, filename
and extension of the file to be saved.

� The path to the file specified in s can be ab-
solute (eg. "C:/MyFiles/MyFolder/MyFile.bws") or
relative to the current working directory (eg.
"./MyFolder/MyFile.bws").

load(s); Loads a previously saved workspace from the file spec-
ified by s to the current workspace. The current
workspace must be empty for the operation to pro-
ceed.
� s must be a string containing the directory, filename
and extension of the file to be loaded.

� The path to the file specified in s can be ab-
solute (eg. "C:/MyFiles/MyFolder/MyFile.bws") or
relative to the current working directory (eg.
"./MyFolder/MyFile.bws").

D = import(s [, d ]);

D = webimport(s [, d ]);

D is a dataset constructed by reading the contents of
the file or URL specified in s.
� s must be a string specifying the directory, filename
and extension of (in the case of import()) or the
URL that points to (in the case of webimport())
the file which contains the data to be imported.

� In the case of import(), the path to the file can
be absolute (eg. "C:/MyFiles/MyFolder/MyFile.csv")
or relative to the current working directory (eg.
"./MyFolder/MyFile.csv").

� d is the delimiter used in the data file to separate
values and must be equal to one of the following
strings:

– "," – ";" – "\t"

The default value is comma (",") and is used for
importing data from csv files. ";" and "\t" can
be specified to alter the default value separator to
semicolon and tab, respectively.

� The variables in the file specified by s must be or-
ganized in columns, with the first row containing
the variable names.

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
export(id, s [, d]);

export(s1, s2 [, <options>]);

When used in the first format, export(id, s [, d]);,
the function exports the item in memory with id value
id to the file specified in s.
� id must be the name of a dataset or matrix cur-
rently in memory (structures, models and strings
cannot be exported).

� s must be a string containing the directory, filename
and extension of the file to which the data are to
be exported

� The path to the file specified in s can be ab-
solute (eg. "C:/MyFiles/MyFolder/MyFile.csv") or
relative to the current working directory (eg.
"./MyFolder/MyFile.csv").

� d is the delimiter used in the data file to separate
values and must be a string with one of the following
values:

– "," – ";" – "\t"

The default value is comma (,) and is used for
exporting data to the csv format. ; and \t can
be specified to alter the default value separator to
semicolon and tab, respectively.

� When exporting a matrix, the values of the matrix
are printed in the file specified in s. When exporting
a dataset, the variable names are printed in the first
row of the file, before printing the actual values of
the variables.

When used in the second format, the function exports
the graph contained in the figure window with title
s1 to the file specified in string s2. The type of the
exported graph (eps, png or jpeg) is determined by
the extension of the file provided in s2.
� s1 must be a string equal to the name appearing on
the title bar of the figure window, the contents of
which are to be exported.

� s2 must be a string containing the directory, file-
name and extension of the file to which the graph
will be exported.

� The path to the file specified in s2 can be ab-
solute (eg. "C:/MyFiles/MyFolder/MyGraph.eps") or
relative to the current working directory (eg.
"./MyFolder/MyGraph.eps").

The <options> argument allows setting the width
and height of the exported figure, in pixels. For
example, export([...],"width"=100,"height"=100); will
set the width and height of the exported figure to 100
pixels. The default values for "width" and "height" are
400 and 250, respectively.
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B.5 Size information, reshaping/replicating & cleaning

The following statements are used to provide information on the dimensions of matrices or the
number of observations or variables in a dataset, to reshape or replicate matrices, and to drop
rows or columns with missing data from a matrix or dataset.

Syntax Arguments and performed function
S = size(X); S is a 2×1 matrix of integers. The first entry of S is

the number of rows of X and the second entry is the
number of columns of X.
� X must be a matrix or dataset

p = rows(X); p is a 1×1 matrix equal to the number of rows of X.
� X must be a matrix or dataset

p = cols(X); p is a 1×1 matrix equal to the number of columns of
X.
� X must be a matrix or dataset

W = kron(X, Y); W is a matrix obtained as the Kronecker product of X,
and Y.
� X must be a matrix or dataset
� Y must be a matrix or dataset

W = repmat(X, M, N); W is a matrix obtained by replicating X, M times along
the row dimension and N times along the column di-
mension.
� X must be a matrix or dataset
� M must be a positive integer
� N must be a positive integer

W = reshape(X, M, N); W is an M×N matrix constructed by reading the entries
of X, in a column-major order.
� X must be a matrix or dataset
� M must be a positive integer
� N must be a positive integer
� If the number of entries of X is not M·N an error is
produced

W = dropmissing(X); W is a matrix constructed by reading the entries of X,
row by row, but skipping any rows in X that contain
at least one missing value. An error is produced if
an empty matrix results from dropping the rows of X
with missing values.
� X must be a matrix or dataset
When the argument provided to dropmissing() is a
dataset, then the function returns a dataset. There-
fore, this function is also documented in Section B.13.
see also dropif and keepif

B.6 Special matrices

The following statements are used to construct some special matrices, like the identity or a
matrix of zeros.
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Syntax Arguments and performed function
W = eye(M, N); W is the M×N upper left block of an identity matrix of

size M×M if M>N or N×N otherwise.
� M must be a positive integer
� N must be a positive integer

W = zeros(M, N); W is an M×N matrix of zeros.
� M must be a positive integer
� N must be a positive integer

W = ones(M, N); W is an M×N matrix of ones.
� M must be a positive integer
� N must be a positive integer

W = range(f, t [, b]); W is a column vector containing values from f to t,
spaced by b. The default value of b is one.
� f must be a scalar
� t must be a scalar
� b must be a scalar

B.7 Simple mathematical functions

The following statements are used to transform data contained in matrices or datasets.

Syntax Arguments and performed function
W = exp(X); W is a matrix with entries equal to the exponentials of

the entries of X. The function works element-wise.
� X must be a matrix or dataset

W = log(X); W is a matrix with entries equal to the natural loga-
rithms of the entries of X. The function works element-
wise.
� X must be a matrix or dataset
� If X contains non-positive entries then the corre-
sponding entries of W are set to nan

W = sqrt(X); W is a matrix with entries equal to the square roots of
the entries of X. The function works element-wise.
� X must be a matrix or dataset
� If X contains negative entries then the corresponding
entries of W are set to nan

W = abs(X); W is a matrix with entries equal to the absolute values
of the entries of X. The function works element-wise.
� X must be a matrix or dataset

W = mod(X, Y); W is a matrix with entries equal to modula of the
element-wise division X./Y

� X must be a matrix or dataset
� Y must be a matrix or dataset
� The dimensions of X and Y must be equal

W = sin(X); W is a matrix with entries equal to the sines of the
entries of X. The function works element-wise.
� X must be a matrix or dataset

table continues on next page
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Syntax Arguments and performed function
W = cos(X); W is a matrix with entries equal to cosines of the entries

of X. The function works element-wise.
� X must be a matrix or dataset

W = tan(X); W is a matrix with entries equal to the tangents of the
entries of X. The function works element-wise.
� X must be a matrix or dataset

W = asin(X); W is a matrix with entries equal to the arcsines of the
entries of X. The function works element-wise.
� X must be a matrix or dataset
� If X contains entries outside the interval [−1, 1] then
the corresponding entries of W are set to nan

W = acos(X); W is a matrix with entries equal to the arccosines of
the entries of X. The function works element-wise.
� X must be a matrix or dataset
� If X contains entries outside the interval [−1, 1] then
the corresponding entries of W are set to nan

W = atan(X); W is a matrix with entries equal to the arctangents of
the entries of X. The function works element-wise.
� X must be a matrix or dataset

W = inv(X); W is the inverse of X.
� X must be a square matrix or dataset
� If X is singular an error is produced

W = invpd(X); W is the inverse of X, where X is symmetric and positive
definite. This function works faster and is more pre-
cise than the general inv() function, taking advantage
of the structure of X.
� X must be a symmetric and positive-definite matrix
or dataset

� If X is not positive definite an error is produced

W = det(X); W is an 1×1 matrix with value equal to the determinant
of X.
� X must be a square matrix

W = trace(X); W is an 1×1 matrix with value equal to the trace of X.
� X must be a square matrix

W = diag(X); The function’s return value depends on the size of X:
→ if X is an M×M matrix then W is an M×1 vector
that contains the values on the diagonal of X
→ if X is vector of length M then W is a diagonalM×M
matrix that contains the entries of X on its diagonal.
� X must be either a square matrix (or dataset) or a
vector

B.8 Matrix decompositions & quadratures

The following statements are used to decompose matrices (or datasets) or to produce abscissae
and weights for approximating integrals via Gaussian quadratures.
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Syntax Arguments and performed function
L = chol(X); L is a lower-triangular matrix such that: L*L′ = X

� X must be a symmetric and positive-definite matrix
or dataset

� If X is not positive definite an error is produced

[v, V] = eig(X); If X is an M×M symmetric matrix then v is an M×1
vector that contains the eigenvalues of X and V is an
M×M matrix that contains the corresponding eigen-
vectors, such that: V*diag(v)*inv(V)= X

� X must be a symmetric matrix or dataset
� Only the lower triangular part of X is used for the
decomposition. This means that if X is not sym-
metric, BayES will not produce a warning or error
message

[x, w] = quadrature(n [, s]); x is an n×1 vector of abscissae and w an n×1 vector
of corresponding weights for a Gaussian quadrature.
Depending on the value of the optional argument, the
abscissae and weights could be for a Gauss-Laguerre
or Gauss-Hermite quadrature.
For the Gauss-Laguerre quadrature it holds:
n
∑

i=1

wi · f(xi) ≈
∫ +∞

0

e−xf (xi) dx

For the Gauss-Hermite quadrature it holds:
n
∑

i=1

wi · f(xi) ≈
∫ ∞

−∞

e−x2

f (xi) dx

� i must be an integer between 2 and 300;
� s must be equal to either "laguerre" or "hermite".
The default value for s is "laguerre", for which
the abscissae and weights are for a Gauss-Laguerre
quadrature.

B.9 Statistical functions, summing, rounding & sorting

The following statemens are used to summarize, sum, round or sort the data contained in a
matrix or dataset.

Syntax Arguments and performed function
W = mean(X [, d]); W is a matrix with entries equal to the sample mean

of the entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the mean is computed. The default
value for d is 1, for which the mean is calculated
over rows.

table continues on next page
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Syntax Arguments and performed function
W = var(X [, d]); W is a matrix with entries equal to the sample variance

of the entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the mean is computed. The default
value for d is 1, for which the variance is calculated
over rows.

W = sd(X [, d]); W is a matrix with entries equal to the sample standard
deviation of the entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the standard deviation is computed.
The default value for d is 1, for which the standard
deviation is calculated over rows.

W = min(X [, d]); W is a matrix with entries equal to the minimum of the
entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the minimum is computed. The de-
fault value for d is 1, for which the minimum is
calculated over rows.

W = max(X [, d] ); W is a matrix with entries equal to the maximum of
the entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the maximum is computed. The de-
fault value for d is 1, for which the maximum is
calculated over rows.

W = median(X [ ,d]); W is a matrix with entries equal to the median of the
entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the median is computed. The default
value for d is 1, for which the median is calculated
over rows.

table continues on next page
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Syntax Arguments and performed function
W = tabulate(v [ ,m]); W is a matrix that contains information on the distri-

bution of the values in vector v. W has three columns:
1. the first column contains the unique values of v,

sorted from smallest to largest
2. the second column lists the number of times each

corresponding unique value in the first column ap-
pears in v

3. the third column lists the number of entries in v

smaller than or equal to the corresponding value
in the first column (cumulative sum of the second
column)

m is an optional argument, specifying the maximum
number of unique values in v beyond which an error
is produced.
� v must be a vector or a dataset with a single row or
column

� m must a positive integer. The default value for m is
20.

W = cov(X [, d] ); W is the sample covariance matrix of the variables con-
tained in X, with the variables organized across dimen-
sion d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
according to which the variables in X are organized.
The default value for d is 1, in which case each col-
umn of X is treated as a variable.

W = corr(X [, d] ); W is the sample correlation matrix of the variables con-
tained in X, with the variables organized across dimen-
sion d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
according to which the variables in X are organized.
The default value for d is 1, in which case each col-
umn of X is treated as a variable.

W = ceil(X); W is a matrix with dimensions equal to those of X

and entries obtained by rounding off the entries of
X upwards to the nearest integer. The function works
element-wise.
� X must be a matrix or dataset

W = floor(X); W is a matrix with dimensions equal to those of X

and entries obtained by rounding off the entries of X

downwards to the nearest integer. The function works
element-wise.
� X must be a matrix or dataset

W = round(X); W is a matrix with dimensions equal to those of X and
entries obtained by rounding off the entries of X to the
nearest integer. The function works element-wise.
� X must be a matrix or dataset

table continues on next page
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Syntax Arguments and performed function
W = sort(X [, d]); W is a matrix with dimensions equal to those of X and

entries obtained by sorting, in ascending order, the
values of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the sorting should be done. The de-
fault value for d is 1, for which the entries of each
column of X are sorted in ascending order.

see also sortrows and sortd

W = sortrows(X [, d]); W is a matrix with dimensions equal to those of X and
entries obtained by sorting the rows of X, in ascend-
ing order, according to the values contained in the
columns, the indices of which are provided in vector
d.
� X must be a matrix or dataset
� d must be vector of integers with maximum value
not greater than the number of columns of X. The
default value for d is 1, for which the rows of of X are
sorted in ascending order according to the values
contained in the first column. If d contains more
than one index, then the rows of X are sorted first
according to the first index, and in case of duplicate
values in the respective column, according to second
index, and so on.

see also sort and sortd

W = sum(X [, d]); W is a matrix with entries equal to the sum of the
entries of X across dimension d.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the sum is computed. The default
value for d is 1, for which the sum is calculated over
rows.

W = logsumexp(X [, d]); W is a matrix with entries equal to the logarithm of
the sum of the exponential of the entries of X across
dimension d:
Wj = log

∑
i exp {Xij}

when d is one (or not provided).
The function is provided to guard against overflow
when calculating quantities of this form, which ap-
pear frequently in the calculation of log-marginal like-
lihoods.
� X must be a matrix or dataset
� d must be either 1 or 2, indicating the dimension
across which the sum is computed. The default
value for d is 1, for which the sum is calculated over
rows.
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B.10 Error function, Beta, Gamma and related mathematical functions

The following table describes statements that are used to evaluate the error function, Beta, Gamma and related functions.

Syntax Mathematical expression Arguments and return values
W = erf(X);

2√
π

x
∫

0

e−t2 dt

W is a matrix with values equal to error function evaluated at each
entry of X. The function works element-wise.

� X must be a matrix or dataset

W = erfc(X);
2√
π

∞
∫

x

e−t2 dt

W is a matrix with values equal to complementary error function eval-
uated at each entry of X. The function works element-wise.

� X must be a matrix or dataset

W = betafunc(X, Y);

B (x) =

1
∫

0

tx−1 (1−t)
y−1

dt

W is a matrix with values equal to the beta function of each entry of X
and the corresponding entry of Y. The function works element-wise.

� X must be a matrix or dataset with positive entries

� Y must be a matrix or dataset with positive entries

� The dimensions of X must be equal to the dimensions of Y

� If X or Y contain non-positive entries then the corresponding entries
of W are set to nan or inf

W = lbetafunc(X, Y); log [B (x, y)] W is a matrix with values equal to the natural logarithm of the beta
function of each entry of X and the corresponding entry of Y. The
function works element-wise.

� X must be a matrix or dataset with positive entries
� Y must be a matrix or dataset with positive entries

� The dimensions of X must be equal to the dimensions of Y

� If X or Y contain non-positive entries then the corresponding entries
of W are set to nan or inf

table continues on next page
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table continued from previous page

Syntax Mathematical expression Arguments and return values
W = betainc(Z, X, Y);

Iz (x, y) =

z
∫

0

tx−1 (1−t)y−1 dt

B (x, y)

W is a matrix with values equal to the normalized/regularized lower
incomplete beta function of each entry of X and the corresponding
entry of Y. The function works element-wise.

� Z must be a matrix or dataset with positive entries

� X must be a matrix or dataset with non-negative entries

� X, Y and Z must have equal dimensions

� If Z contains negative entries or entries above one an error is pro-
duced

� If X or Y contain non-positive entries then an error is produced

W = gammafunc(X);

Γ (x) =

∞
∫

0

tx−1e−t dt

W is a matrix with values equal to the gamma function of each entry of
X. The function works element-wise.

� X must be a matrix or dataset

� If X contains non-positive integers then the corresponding entries of
W are set to nan or inf

W = lgammafunc(X); log [Γ (x)] W is a matrix with values equal to the natural logarithm of the gamma
function of each entry of X. The function works element-wise.

� X must be a matrix or dataset

� If X contains non-positive entries an error is produced

W = gammainc(Z, X);

γ (z, x)

Γ(x)
=

z
∫

0

tx−1e−t dt

Γ (x)

W is a matrix with values equal to the normalized/regularized lower
incomplete gamma function of each entry of X. The function works
element-wise.

� Z must be a matrix or dataset with positive entries

� X must be a matrix or dataset with non-negative entries

� the dimensions of X must be equal to the dimensions of of Z

� If X or Z contain non-positive entries then an error is produced

table continues on next page



B
.1
0
.
E
R
R
O
R
F
U
N
C
T
IO

N
,
B
E
T
A
,G

A
M
M
A
A
N
D
R
E
L
A
T
E
D
M
A
T
H
E
M
A
T
IC

A
L
F
U
N
C
T
IO

N
S
1
9
9

table continued from previous page

Syntax Mathematical expression Arguments and return values
W = mvgammafunc(X, k);

Γk (x) = π
k(k−1)

4

k
∏

j=1

Γ

(

x+
1−j

2

) W is a matrix with values equal to the k-dimensional gamma function
of each entry of X. The function works element-wise.

� X must be a matrix or dataset

� k must be a positive integer

� If X contains non-positive integers then the corresponding entries of
W are set to nan or inf

W = lmvgammafunc(X, k); log [Γk (x)] W is a matrix with values equal to the natural logarithm of the k-
dimensional gamma function of each entry of X. The function works
element-wise.

� X must be a matrix or dataset

� k must be a positive integer

� If X contains non-positive integers then the corresponding entries of
W are set to nan or inf
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B.11 Probability and cumulative density functions

The following two tables describe statements that are used to evaluate probability density/mass and cumulative density functions (pdfs and cdfs) of
some popular distributions.

Syntax Mathematical expression Arguments and return values
W = betapdf(X, alpha, beta);

W = betacdf(X, alpha, beta); f (x) =
xα−1 · (1− x)

β−1

B (α, β)

F (x) =

x
∫

0

tα−1 · (1− t)β−1 dt

B (α, β)

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the beta distribution with shape parameters alpha and
beta, evaluated at each entry of X. The function works element-wise.

� X must be a matrix or dataset with entries between zero and one

� If X contains negative entries or entries above one an error is pro-
duced

� alpha must be a positive number

� beta must be a positive number

W = chi2pdf(X, p);

W = chi2cdf(X, p); f (x) =
x

p
2−1 · e−x

2

2
p
2 · Γ

(

p
2

)

F (x) =

x
∫

0

t
p
2−1 · e− t

2 dt

2
p
2 · Γ

(

p
2

)

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the chi-squared distribution with p degrees of freedom,
evaluated at each entry of X. The function works element-wise.

� X must be a matrix or dataset with non-negative entries

� If X contains negative entries an error is produced

� p must be a positive number

W = exppdf(X, lambda);

W = expcdf(X, lambda);
f (x) = λe−λx

F (x) = 1− e−λx

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the exponential distribution with rate parameter lambda,
evaluated at each entry of X. The function works element-wise.

� X must be a matrix or dataset with non-negative entries

� If X contains negative entries an error is produced

� lambda must be a positive number

table continues on next page
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table continued from previous page

Syntax Mathematical expression Arguments and return values
W = evpdf(X, mu, sigma);

W = evcdf(X, mu, sigma); f (x) =
1

σ
exp

{

−z − e−z
}

F (x) = exp {−e−z}
where:
z = x−µ

σ

W is a matrix with dimensions equal to those of X and entries equal
to the pdf/cdf of the type-I extreme-value distribution with location
parameter mu and scale parameter sigma, evaluated at each entry of X.
The function works element-wise.

� X must be a matrix or dataset

� mu must be a number

� sigma must be a positive number

W = fpdf(X, p1, p2);

W = fcdf(X, p1, p2);

f (x) =

(

(p1x)
p1p

p2
2

(p1x+p2)
p1+p2

)

1
2

xB
(

p1

2 , p2

2

)

F (x) =

p1x
p1x+p2
∫

0

t
p1
2 −1 (1−t)

p2
2 −1

dt

B
(

p1

2 , p1

2

)

W is a matrix with dimensions equal to those of X and entries equal
to the pdf/cdf of Fisher’s F distribution with numerator degrees of
freedom p1 and denominator degrees of freedom p2, evaluated at each
entry of X. The function works element-wise.

� X must be a matrix or dataset with non-negative entries

� If X contains negative entries an error is produced

� p1 must be a positive number

� p2 must be a positive number

W = gampdf(X, alpha, beta);

W = gamcdf(X, alpha, beta); f (x) =
βα · xα−1 · e−βx

Γ (α)

F (x) =

βα
x
∫

0

tα−1 · e−βt dt

Γ (α)

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the gamma distribution with shape parameter alpha and
rate parameter beta, evaluated at each entry of X. The function works
element-wise.

� X must be a matrix or dataset with non-negative entries
� If X contains negative entries an error is produced
� alpha must be a positive number

� beta must be a positive number

table continues on next page
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table continued from previous page

Syntax Mathematical expression Arguments and return values
W = logisticpdf(X, mu, s);

W = logisticcdf(X, mu, s); f (x) =
e−

x−µ
s

s ·
(

1 + e−
x−µ

s

)2

F (x) =
1

1 + e−
x−µ

s

W is a matrix with dimensions equal to those of X and entries equal to the
pdf/cdf of the logistic distribution with mean mu and scale parameter

s (variance equal to s2π2

3 ), evaluated at each entry of X. The function
works element-wise.

� X must be a matrix or dataset

� mu must be a number

� s must be a positive number

W = logitnpdf(X, mu, sigma);

W = logitncdf(X, mu, sigma);

f (x) =

exp

{

− (log( x
1−x )−µ)

2

2σ2

}

x (1− x)
√
2πσ2

F (x) =

x
∫

0

exp

{

− (log( t
1−t )−µ)2

2σ2

}

t (1− t)
√
2πσ2

dt

W is a matrix with dimensions equal to those of X and entries equal
to the pdf/cdf of logit-Normal distribution with location parameter mu

and scale parameter sigma, evaluated at each entry of X. The function
works element-wise.

� X must be a matrix or dataset with entries between zero and one

� If X contains negative entries or entries greater than one an error is
produced

� mu must be a number

� sigma must be a positive number

W = lognpdf(X, mu, sigma);

W = logncdf(X, mu, sigma); f (x) =
exp

{

− (log(x)−µ)2

2σ2

}

x
√
2πσ2

F (x) =

x
∫

0

exp
{

− (log(t)−µ)2

2σ2

}

t
√
2πσ2

dt

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the log-Normal distribution with location parameter mu

and scale parameter sigma, evaluated at each entry of X. The function
works element-wise.

� X must be a matrix or dataset with non-negative entries
� If X contains negative entries an error is produced

� mu must be a positive number

� sigma must be a positive number

table continues on next page
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table continued from previous page

Syntax Mathematical expression Arguments and return values
W = normpdf(X, mu, sigma);

W = normcdf(X, mu, sigma); f (x) =
exp

{

− (x−µ)2

σ2

}

√
2πσ2

F (x) =

x
∫

−∞

exp
{

− (t−µ)2

σ2

}

√
2πσ2

dt

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the normal distribution with mean parameter mu and
standard deviation sigma, evaluated at each entry of X. The function
works element-wise.

� X must be a matrix or dataset

� mu must be number

� sigma must be a positive number

W = tpdf(X, p);

W = tcdf(X, p); f (x) =
Γ
(

p+1
2

)

√
pπΓ

(

p
2

)

(

1 + x2

p

)−
p+1
2

F (x) =

x
∫

−∞

Γ
(

p+1
2

)

√
pπΓ

(

p
2

)

(

1+ t2

p

)−
p+1
2

dt

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the t distribution with p degrees of freedom, evaluated
at each entry of X. The function works element-wise.

� X must be a matrix or dataset

� p must be a positive number

W = truncnpdf(X, mu, sigma);

W = truncncdf(X, mu, sigma); f (x) =
1
σφ

(

−µ
σ

)

1− Φ
(

−µ
σ

)

F (x) =
Φ
(

x−µ
σ

)

− Φ
(

−µ
σ

)

1− Φ
(

−µ
σ

)

where:
φ () is the standard normal pdf
Φ () is the standard normal cdf

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of a Normal distribution with location parameter mu and
scale parameter sigma, truncated from below at zero and evaluated at
each entry of X. The function works element-wise.

� X must be a matrix or dataset with non-negative entries

� mu must be a number

� sigma must be a positive number

W = wblpdf(X, alpha, beta);

W = wblcdf(X, alpha, beta); f (x) =
α

β

(

x

β

)α−1

e−(
x
β )

α

F (x) = 1− e−(
x
β )

α

W is a matrix with dimensions equal to those of X and entries equal
to the pdf/cdf of the Weibull distribution with shape parameter alpha

and scale parameter beta, evaluated at each entry of X. The function
works element-wise.

� X must be a matrix or dataset with non-negative entries

� If X contains negative entries an error is produced

� alpha must be a positive number

� beta must be a positive number
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Syntax Mathematical expression Arguments and return values
W = binompdf(X, n, p);

W = binomcdf(X, n, p); f (x) =
n!

x! (n− x)!
px (1− p)

n−x

F (x) =

x
∑

k=0

n!

k! (n− k)!
pk (1− p)

n−k

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the binomial distribution with n of trials and probability
of success in each trial p, evaluated at each entry of X. The function
works element-wise.

� X must be a matrix or dataset with integer entries between zero and
n

� If X contains negative entries or entries above n an error is produced

� n must be a non-negative number

� p must be a number between zero and one
Note that the function allows for non-integer values of n by replacing
the factorials in the expression by the Gamma function.

W = nbinompdf(X, n, p);

W = nbinomcdf(X, n, p); f (x) =
(x+n−1)!

x! (n−1)!
px (1− p)n

F (x) =

x
∑

k=0

(x+n−1)!

x! (n−1)!
px (1− p)

n

W is a matrix with dimensions equal to those of X and entries equal to
the pdf/cdf of the negative-binomial distribution with n failures until
stopping and probability of success in each trial p, evaluated at each
entry of X. The function works element-wise.

� X must be a matrix or dataset with non-negative integer entries

� If X contains negative entries an error is produced

� n must be a positive number

� p must be a number between zero and one
Note that the function allows for non-integer values of n by replacing
the factorials in the expression by the Gamma function.

W = poissonpdf(X, lambda);

W = poissoncdf(X, lambda); f (x) =
λxe−λ

x!

F (x) =
λke−λ

k!

W is a matrix with dimensions equal to those of X and entries equal
to the pdf/cdf of the Poisson distribution with rate parameter lambda,
evaluated at each entry of X. The function works element-wise.

� X must be a matrix or dataset with non-negative integer entries

� If X contains negative entries an error is produced

� lambda must be a positive number
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B.12 Random-number generators

Random-numbers are generated using a common general seed number. The seed is set to 42
every time BayES starts and is advanced appropriately every time a random-number generator
is called. The seed can be set at any point in a script file using the statement:

seed(<positive integer>);

Note that when a model function is called, another seed is used, which is internal to the
particular model and does not advance the general seed. This allows reproducibility of results
irrespective of how many random numbers, if any, have been generated in statements before
the call to the model function. The model’s internal seed is also set to 42 and this value can
be altered by passing an optional argument of the form:

... , "seed"=<positive integer>, ...

to the model function.

B.12.1 Univariate distributions

The generic syntax for calling a random-number generator for a univariate distribution is:

W = distributionName( <parameters> [, M, N]);

where distributionName is the name of a distribution for which BayES provides random numbers
(see table below), and <parameters> is a list of the distribution’s parameters, as described in
section B.11. These parameters must be separated by commas if more than one parameter
needs to be supplied. The size of the return matrix, W, depends on the size of the parameters
passed as arguments to the function and on whether the optional arguments, M and N, are
supplied:

� if the distribution’s parameters are scalars and no optional arguments are supplied then
W is an 1×1 matrix which contains a random draw from the respective distribution.

� if the distribution’s parameters are scalars then M and N can be used to request multiple
random numbers. W in this case will be an M×N matrix which contains random draws
from the distribution. If M is supplied then N must be supplied as well.

� if the distribution’s parameters are matrices and their dimensions match (if more than
one parameter needs to be supplied) then W will have the same size as the parameters and
it will contain random draws from the distribution, generated by combining parameters
in an element-wise fashion. Since the dimensions of W are determined by the dimensions
of the distribution’s parameters, M and N must not be supplied.

� for distributions which require specifying more than one parameter, if one of the param-
eters supplied is a scalar and another a matrix, then the scalar parameter is expanded
to match the dimensions of the matrix parameter. In this case W has the same size as the
matrix parameter. Again, M and N must not be supplied because the dimensions of W are
determined by the dimensions of the distribution’s parameters.

The following two tables document the random-number generating functions for continuous
and discrete random variables, respectively.
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Syntax Arguments and performed function
W = betarnd(alpha, beta [, M, N ]); W is a matrix of random numbers from a beta distri-

bution with shape parameters alpha and beta.
� alpha must be a matrix with positive entries
� beta must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also betapdf, betacdf

W = chi2rnd(p [, M, N ]); W is a matrix of random numbers from a chi-squared
distribution with p degrees of freedom.
� p must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also chi2pdf, chi2cdf

W = exprnd(lambda [, M, N ]); W is a matrix of random numbers from an exponential
distribution with rate parameter lambda.
� lambda must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also exppdf, expcdf

W = evrnd(mu, sigma [, M, N ]); W is a matrix of random numbers from a type-I
extreme-value distribution with location parameter mu
and scale parameter sigma

� mu must be a matrix
� sigma must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also evpdf, evcdf

W = frnd(p1, p2 [, M, N ]); W is a matrix of random numbers from Fisher’s F dis-
tribution with numerator degrees of freedom p1 and
denominator degrees of freedom p2.
� p1 must be a matrix with positive entries
� p2 must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also fpdf, fcdf

W = gamrnd(alpha, beta [, M, N ]); W is a matrix of random numbers from a gamma distri-
bution with shape parameter alpha and rate parameter
beta.
� alpha must be a matrix with positive entries
� beta must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also gampdf, gamcdf

W = logisticrnd(mu, s [, M, N ]); W is a matrix of random numbers from a logistic distri-
bution with mean mu and scale parameter s (variance

equal to s2π2

3 ).
� mu must be a matrix
� s must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also logisticpdf, logisticcdf

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
W = logitnrnd(mu, sigma [, M, N ]); W is a matrix of random numbers from a logit-normal

distribution with location parameter mu and scale pa-
rameter sigma.
� mu must be a matrix
� sigma must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also logitnpdf, logitncdf

W = lognrnd(mu, sigma [, M, N ]); W is a matrix of random numbers from a log-normal
distribution with location parameter mu and scale pa-
rameter sigma.
� mu must be a matrix
� sigma must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also lognpdf, logncdf

W = normrnd(mu, sigma [, M, N ]); W is a matrix of random numbers from a normal dis-
tribution with mean mu and standard deviation sigma.
� mu must be a matrix
� sigma must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also normpdf, normcdf

W = trnd(p [, M, N ]); W is a matrix of random numbers from a t distribution
with p degrees of freedom.
� p must be a matrix
� M must be a positive integer
� N must be a positive integer
see also tpdf, tcdf

W = truncnrnd(mu, sigma [, M, N ]); W is a matrix of random numbers from a normal distri-
bution with location parameter mu and scale parame-
ter sigma, truncated from below at zero.
� mu must be a matrix
� sigma must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also truncnpdf, truncncdf

W = unifrnd([ M, N ]); W is a matrix of random numbers from a uniform dis-
tribution on the interval [0, 1].
� M must be a positive integer
� N must be a positive integer

W = wblrnd(alpha, beta [, M, N ]); W is a matrix of random numbers from a Weibull dis-
tribution with shape parameter alpha and scale pa-
rameter beta.
� alpha must be a matrix with positive entries
� beta must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also wblpdf, wblcdf
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Syntax Arguments and performed function
W = catrnd(p [, M, N ]); W is a matrix of random numbers from a categorical

distribution with probability vector specified in each
row of p. The number of outcomes is deduced from
the number of columns of p and numbering starts at 0.
That is, if p is a 1×k vector, the possible values of the
random variable are {0, 1, . . . , k − 1} and the proba-

bility of obtaining outcome j is equal to the (j + 1)
th

element of p.
� p must be a matrix with non-negative entries and
values such that each row sums to unity

� M must be a positive integer
� N must be a positive integer

W = binomrnd(n, p [, M, N ]); W is a matrix of random numbers from a binomial dis-
tribution with n trials and probability of success in
each trial p.
� n must be a matrix with non-negative entries
� p must be a matrix with entries between zero and
one

� M must be a positive integer
� N must be a positive integer
Note that the function allows for non-integer values of
n by replacing the factorials in the expressions for the
probability mass and cumulative density functions by
the Gamma function.
see also binompdf, binomcdf

W = nbinomrnd(n, p [, M, N ]); W is a matrix of random numbers from a negative bino-
mial distribution with n failures before stopping and
probability of success in each trial p.
� n must be a matrix with positive entries
� p must be a matrix with entries between zero and
one

� M must be a positive integer
� N must be a positive integer
Note that the function allows for non-integer values of
n by replacing the factorials in the expressions for the
probability mass and cumulative density functions by
the Gamma function.
see also nbinompdf, nbinomcdf

W = poissonrnd(lambda [, M, N ]); W is a matrix of random numbers from a Poisson dis-
tribution with rate parameter lambda.
� lambda must be a matrix with positive entries
� M must be a positive integer
� N must be a positive integer
see also poissonpdf, poissoncdf
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B.12.2 Multivariate distributions

The following table describes statements that are used to generate ran-
dom numbers from multivariate distributions. The general format of these
statements is similar to random-number generators for univariate distri-

butions, but, because multivariate random-number generators return vec-
tors or matrices, the optional dimension arguments do not have the usual
meaning: these generators can generate M or one random draw per call.

Syntax Mathematical expression Arguments and return values
W = mvnrnd(mu, V [, M ]);

f (x) =
|V|− 1

2 e(x−µ)′V−1(x−µ)

(2π)
k
2

W is an M × k matrix of random numbers from a k-variate normal
distribution with mean mu (either k×1 or 1×k) and variance matrix V

(k×k).

� mu must be a matrix with at least one dimension equal to 1

� V must be a square and positive-definite matrix

� the dimensions of mu and V must match: if V is k×k then mu must be
either k×1 or 1×k

� M must be a positive integer

W = wishrnd(V, p);

f (X) =
|X| p−k−1

2 e−
1
2 tr(V

−1
X)

2
pk
2 |V| p2 Γk

(

p
2

)

W is a k×k matrix of random numbers from a k-dimensional Wishart
distribution with scale matrix V (k×k) and p degrees of freedom.

� V must be a square and positive-definite matrix

� p must be a positive number

W = iwishrnd(V, p);

f (X) =
|X|− p+k+1

2 e−
1
2 tr(VX

−1)

2
pk
2 |V|− p

2 Γk

(

p
2

)

W is a k×k matrix of random numbers from a k-dimensional inverse-
Wishart distribution with scale matrix V (k×k) and p degrees of free-
dom.

� V must be a square and positive-definite matrix

� p must be a positive number

W = drchrnd(alpha [, M ]);

f (x) =
1

B (α)

k
∏

j=1

x
αj−1
j

W is an M×k matrix of random numbers from a k-dimensional Dirichlet
distribution with concentration parameters specified in each row of
alpha. The dimension of the distribution, k ≥ 2, is inferred by the
number of columns of alpha.

� alpha must be a matrix of positive numbers with at least 2 columns

� M must be a positive integer
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B.13 Statements for working with datasets

For all practical purposes datasets in BayES are matrices with additional structure. This
means that if, for example, D is a dataset, then indexing operations and functions operating on
matrices work on D in the same way as if D were a matrix. There are, however, some additional
functions and statements that work on datasets, but not on matrices. These are documented
in the following table.

Syntax Arguments and performed function
X = D.varname; X is a column vector with entries equal to the values

of variable varname in dataset D.
� D must be a dataset
� varname must be the name of a variable contained in

D

D.varname = <math expression>; Creates a new variable called varname (defined by
<math expression>) and adds it to dataset D. If D al-
ready has a variable called varname then its values are
replaced.
� D must be a dataset
� varname must be a valid id value
� <math expression> could by any mathematical ex-
pression that returns a scalar or a column vector
with number of rows equal to the number of obser-
vations in D

� when <math expression> returns a scalar, then its
value is expanded to match the number of rows of
D (note that this is the only instance where BayES

will expand a scalar in the right-hand side of an
assignment statement to match the dimensions of
the left-hand side item)

clear(D.varname); Deletes the variable called varname from dataset D.
� D must be a dataset
� varname must be the name of a variable contained in

D

D = dataset(A [, {ID1, ID2, ...}]); D is a dataset constructed by the data contained in
matrix A. ID1, ID2, ... is a list of id values (id val-
ues inside curly brackets) to be used as the variable
names. If variable names are not provided then the
variables are named _V1, _V2, etc.
� A must be a matrix
� ID1, ID2, ... must be distinct id values
� the number of id values provided must be equal to
the number of columns in A

see also import

rename(D.oldname, newname); Renames variable oldname in dataset D to newname.
� D must be a dataset
� oldname must be a variable within D

� newname must be an id value

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
keepif(<condition> [,"dataset"=D]); Keeps the observations in dataset D that satisfy the

logical <condition>. The remaining observations
(those that do not satisfy <condition>) are perma-
nently deleted from D. If D is not provided then the
function operates on the first dataset available in the
current workspace. The statement has no return value
and the data in D are overwritten.
� D must be a dataset
� <condition> could be a simple or compound logical
condition, for example:
– D.var1 >= D.var2

– D.var1 >= D.var2 | D.var3 == 0

see also dropif and dropmissing

dropif(<condition> [,"dataset"=D]); Drops (permanently deletes) the observations in
dataset D that satisfy the logical <condition>. The
remaining observations (those that do not satisfy
<condition>) are retained. If D is not provided then
the function operates on the first dataset available in
the current workspace. The statement has no return
value and the data in D are overwritten.
� D must be a dataset
� <condition> could be a simple or compound logical
condition, for example:
– D.var1 >= D.var2

– D.var1 >= D.var2 | D.var3 == 0

see also keepif and dropmissing

W = dropmissing(X); W is a dataset constructed by reading the entries of X,
row by row, but skipping any rows in X that contain
at least one missing value. An error is produced if
an empty dataset results from dropping the rows of X
with missing values.
� X must be a matrix or dataset
When the argument provided to dropmissing() is a ma-
trix then the function returns a matrix. Therefore,
this function is also documented in Section B.5.
see also dropif and keepif

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
sortd(<variables> [,"dataset"=D]); Sorts the data in dataset D in ascending order accord-

ing to the values of the variables, the names of which
are provided in the <variables> list. If D is not pro-
vided then the function operates on the first dataset
available in the current workspace. The statement has
no return value and the data in D are overwritten.
� D must be a dataset
� <variables> could be one of the following:
– a single variable name (id value)

ex: myVariable

– a list of variable names (id values inside curly
brackets and separated by commas)
ex: {variable1, variable2}

In the latter case the data are sorted first accord-
ing to variable1, and in case of duplicate values in
variable1, according to variable2, within each group
of duplicate values of variable1

see also sort and sortrows

summary(<variables>

[,"dataset"=D]);

Calculates and prints summary statistics of the vari-
ables in dataset D. If D is not provided then the func-
tion operates on the first dataset available in the cur-
rent workspace.
� D must be a dataset
� <variables> defnines the variables for which sum-
mary statistics are calculated and could be one of
the following:
– a single variable name

ex: myVariable

– a list of variable names (id values inside curly
brackets and separated by commas)
ex: {variable1, variable2}

– the keyword all which requests calculation of
summary statistics for all variables in D

set_ts(tid

[,"format"=s,"dataset"=D]);

Declares the dataset as time series, with tid being the
variable that identifies time periods. If D is not pro-
vided then the function operates on the first dataset
available in the current workspace.
� D must be a dataset
� tid must be the name of a variable contained in

D; this variable can have either numeric or string
values

� s must be one of the following strings:
– "index": integer values
– "yyyyqx": quarterly data
– "yyyymxx": monthly data
– "yyyy/mm/dd": daily data
The default value for s is "index", in which the mag-
nitude of the integer values indicates the time or-
dering and spacing of the observations.

� each observation in D must have a unique value for
the tid variable

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
set_pd(tid, pid

[,"format"=s,"dataset"=D]);

Declares the dataset as a panel, with tid being the
variable that identifies time periods and pid the vari-
able that identifies groups. If D is not provided then
the function operates on the first dataset available in
the current workspace.
� D must be a dataset
� tid must be the name of a variable contained in

D; this variable can have either numeric or string
values

� pid must be the name of a variable contained in D.
Its values must be integers, with equal magnitude
for observations which belong to the same group

� s must be one of the following strings:
– "index": integer values
– "yyyyqx": quarterly data
– "yyyymxx": monthly data
– "yyyy/mm/dd": daily data
The default value for s is "index", in which the mag-
nitude of the integer values indicates the time or-
dering and spacing of the observations.

� each observation in D must have a unique value for
the tid-pid pair of variables

set_cs(["dataset"=D]); Clears any time structure from dataset D, that was set
by a call to either the set_ts or set_pd functions. If D

is not provided then the function operates on the first
dataset available in the current workspace.
� D must be a dataset

X = lag(varname [,l,"dataset"=D]); X is a column vector obtained by taking lags of length
l on variable with name varname from dataset D. If D is
not provided then the function operates on the first
dataset available in the current workspace.
� D must be a dataset, previously declared either as a
time-series or panel dataset

� varname must be the name of a variable contained in
D

� l must be an integer. The default value for l is 1

X = diff(varname

[,o,l,"dataset"=D]);

X is a column vector obtained by taking seasonal dif-
ferences of order o and seasonal length l on variable
with name varname from dataset D. If D is not pro-
vided then the function operates on the first dataset
available in the current workspace.
� D must be a dataset, previously declared either as a
time-series or panel dataset

� varname must be the name of a variable contained in
D

� o must be a positive integer. The default value for
o is 1

� l must be an integer. The default value for l is 1

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
X = groupmeans(varname

[,"dataset"=D]);

X is a column vector obtained by calculating the arith-
metic mean per group of the variable with name
varname from dataset D. X has the same length as the
number of observations in D and missing values are
generated if varname has only missing values for a par-
ticular group. If D is not provided then the function
operates on the first dataset available in the current
workspace.
� D must be a dataset, previously declared as a panel
dataset

� varname must be the name of a variable contained in
D

X = groupvars(varname

[,"dataset"=D]);

X is a column vector obtained by calculating the vari-
ance per group of the variable with name varname from
dataset D. X has the same length as the number of
observations in D and missing values are generated if
varname has only missing values for a particular group.
If D is not provided then the function operates on the
first dataset available in the current workspace.
� D must be a dataset, previously declared as a panel
dataset

� varname must be the name of a variable contained in
D

X = groupsds(varname

[,"dataset"=D]);

X is a column vector obtained by calculating the stan-
dard deviation per group of the variable with name
varname from dataset D. X has the same length as the
number of observations in D and missing values are
generated if varname has only missing values for a par-
ticular group. If D is not provided then the function
operates on the first dataset available in the current
workspace.
� D must be a dataset, previously declared as a panel
dataset

� varname must be the name of a variable contained in
D

X = groupmedians(varname

[,"dataset"=D]);

X is a column vector obtained by calculating the me-
dian per group of the variable with name varname from
dataset D. X has the same length as the number of
observations in D and missing values are generated if
varname has only missing values for a particular group.
If D is not provided then the function operates on the
first dataset available in the current workspace.
� D must be a dataset, previously declared as a panel
dataset

� varname must be the name of a variable contained in
D

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
X = groupsums(varname

[,"dataset"=D]);

X is a column vector obtained by calculating the sum
per group of the variable with name varname from
dataset D. X has the same length as the number of
observations in D and missing values are generated if
varname has only missing values for a particular group.
If D is not provided then the function operates on the
first dataset available in the current workspace.
� D must be a dataset, previously declared as a panel
dataset

� varname must be the name of a variable contained in
D

X = groupcounts(varname

[,"dataset"=D]);

X is a column vector obtained by calculating the num-
ber of observations per group of the variable with
name varname from dataset D. X has the same length as
the number of observations in D and the number of ob-
servations per group excludes any observations with
missing values on varname. If D is not provided then
the function operates on the first dataset available in
the current workspace.
� D must be a dataset, previously declared as a panel
dataset

� varname must be the name of a variable contained in
D

B.14 Statements for post-estimation analysis

If the results of an estimated model are saved in memory (by providing an id value in the left-
hand side of a model-estimation statement), these results become available for various types of
post-estimation analysis. These include calculating and presenting MCMC diagnostics, testing
hypotheses and comparing models based on Bayes factors, calculating marginal effects, etc.

Syntax Arguments and performed function
[W =] diagnostics( ["model"=m] ); Calculates and prints MCMC diagnostics for the

model with id value m. If m is not provided then the
function operates on the first model (in alphabetical
order) in the current workspace. The reported diag-
nostics currently include:
– the header printed on top of every model estimated
(number of observations, Gibbs parameters, log-
marginal likelihood, etc.)

– an estimate of the Monte Carlo standard error for
every model parameter

– an estimate of the relative numerical efficiency and
the inefficiency factor (Chib, 2001) for every model
parameter

If a left-hand-side id value, W, is provided then the
contents of the diagnostics table are stored in W.
� m must be a model

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
[W =] plotdraws( p [,"model"=m] ); Creates a new figure window and plots four types of

plots using the draws of paramater p from model m.
These plots are:
� the history of the draws per chain
� the correlogram of the draws
� the histogram of the draws
� the kernel desnity of the draws per chain
If m is not provided then the function operates on
the first model (in alphabetical order) in the current
workspace.
If a left-hand-side id value, W, is provided then the title
of the figure window on which the function is plotting
is stored in W.
� p must be the name of a parameter estimated by
model m

� m must be a model currently in memory

[W =] test( <condition1>

[, <condition2>, ...]

);

Calculates and prints the number of times and per-
centage that conditions <condition1>, <condition2>,
. . . , are satisfied, first individually and then jointly.
These conditions can be expressed using general vec-
tors. For example, <condition1> could be: v1>=v2,
where v1 and v2 are vectors of equal length, say N .
In this case the test function would count the number
of times the nth element of v1 is greater than or equal
to the nth element of v2, for n = 1, 2, . . . , N .
The test statement is most frequently used to test
restrictions that involve the parameters of a model m.
In this case <condition1> could be: m.x1<3, where test

counts the number of times the parameter associated
with variable x1 is smaller than 3 (note that scalar
values are expanded to match the size of m.x1).
If a left-hand-side id value, W, is provided then the
contents of the printed table are stored in W.
� <condition1>, <condition2>, . . . must be logical
conditions of the form:
v1 <comparison operator> v2

where v1 and v2 are vectors of equal length and
<comparison operator> is one of the following:

– >

– >=

– <

– <=

– ==

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
pmp( { m1, m2 [, m3, m4 ...] }

[, "priors"=p]

[, "logML CJ"=true|false]

);

Calculates and prints the posterior model probabili-
ties of models m1, m2, . . . , assuming that the list of
models provided is exhaustive. The posterior model
probabilities are calculated using Bayes factors and
the model prior probabilities provided in vector p.
If the optional argument "logML_CJ" is set to true

then Bayes factors are calculated using the Chib
(1995)/Chib & Jeliazkov (2001) approximation of the
marginal likelihood for the models this is available;
otherwise, the Lewis & Raftery (1997) approximation
is used for all models.
� m1, m2 [, m3, m4 ...] must be models currently in
memory

� p must be a vector of non-negative values that sum
to unity, the length of which is equal to the number
of models to be compared. The default value for
p is set such that every model to be compared is
given equal prior probability.

� "logML_CJ" must be either true or false. The default
value for "logML_CJ" is false.

[W =] mfx( ["point"=p]

[,"model"=m]

[,"type"=i]

[,"opt"=z]

);

Calculates and prints marginal effects of the type in-
dicated by i, for model m, at the point indicated by
p, while using z to pass any additional numerical in-
put (model-specific). All arguments are optional and,
therefore, the order in which they are provided does
not matter.
If m is not provided then the function operates on
the first model (in alphabetical order) in the current
workspace.
If a left-hand-side id value, W, is provided then the
contents of the marginal effects table are stored in W.
� p must be either a vector of values indicating the
point at which the marginal effects are to be eval-
uated or one of the following strings:

– "mean" – "median" – "x_i"

In the first case the marginal effects are evaluated
at the sample mean, in the second at the sample
median and in the third at each data point (before
being averaged for reporting).
The default value for p is "mean".

� m must be a model currently in memory
� i must be a positive integer that controls the type
of marginal effects to be calculated; the type of
marginal effects available is model-specific (some
models do not provide marginal effects at all) and
the semantics of this argument are documented un-
der each model

� z must be a matrix and its meaning varies by model

table continues on next page
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Syntax Arguments and performed function
[[p1, p2, ...] =] predict( ["point"=p]

[,"model"=m]

[,"stats"=true|false]

[,"type"=i]

[,"opt"=z]

[,"prefix"=f]

);

Generates predictions of the type indicated by i, for
model m, at the point(s) indicated by p, while us-
ing z to pass any additional numerical input (model-
specific). If "stats" is set to true, summary statistics
for each prediction are also generated. All arguments
are optional and, therefore, the order in which they
are provided does not matter.
If m is not provided then the function operates on
the first model (in alphabetical order) in the current
workspace.
If left-hand-side id values, [p1, p2, ...], are provided
then the predictions and, possibly, their summary
statistics, are stored in p1, p2, etc.
� p must be either a matrix of values indicating the
points at which the predictions are to be made or
string "x_i". In the latter case predictions are made
at each data point in the dataset used by estima-
tion and the results (point estimates and, possibly,
summary statistics) are stored in the dataset with
variable names prefixed by f.

� m must be a model currently in memory
� i must be a positive integer that controls the type of
predictions to be generated; the type of predictions
available is model-specific (some models do not pro-
vide a procedure for generating predictions at all)
and the semantics of this argument are documented
under each model

� z must be a matrix and its meaning varies by model
� f must be a valid id value and indicates the prefix
in the variable names to be stored in the dataset if
the "point"\ option is set to "x_i"; the default value
for f is p_

table continues on next page
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Syntax Arguments and performed function
store( e, varname [,"model"=m] ); Stores element e from model m to the dataset asso-

ciated with m in variable varname. If a variable with
the same name already exists in the dataset then its
values are replaced by the values in e. If m is not pro-
vided then the function operates on the first model
(in alphabetical order) in the current workspace.
This function is used to store observation-specific es-
timates to the datasets used for estimating the pa-
rameters of a model. Due to possible missing values
in the original dataset, there is no guarantee that the
observation-specific estimates in e will have an one-to-
one relationship to the data contained in the dataset.
store is, therefore, used to associate the values in e

with specific observations.
Model-specific documentation of the store function is
provided in the section where the model is defined.
Not all models provide a store function.
� e must be an element of model m
� varname must be an id value
� m must be a model currently in memory

[f1, f2, ...] = forecast(

["horizon"=h]

[, "W"=M]

[, "model"=m]

);

Calculates and stores h period ahead forecasts for the
endogenous variables in model m, using the values in
matrix M for the exogenous variables (if any). This
function is available only for dynamic models, such as
ARIMA, VAR, etc. All three arguments are optional
and, therefore, the order in which they are provided
does not matter.
f1, f2, ... are h×4 matrices whose columns contain
the expected values and standard deviations of the
forecasts per endogenous variable, as well as the up-
per and lower bounds of the respective 90% credible
intervals. Upon completion of the forecast function,
these matrices are also made available as elements of
model m, with id values constructed by prepending
“f_” to the respective endogenous variable name.
If m is not provided then the function operates on
the first model (in alphabetical order) in the current
workspace.
� h must be a positive integer. The default value for

h is 1.
� M must be a h×K matrix, where K is the number of
exogenous variables in the model. If the model con-
tains exogenous variables but "W" is not provided,
then the sample means of the exogenous variables
are used.

� If both "horizon" and "W" are provided then the num-
ber of rows of M must be equal to h. If only "W" is
provided then the number of forecast periods is in-
ferred from the rows of M.

� m must be a model currently in memory

table continues on next page
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table continued from previous page

Syntax Arguments and performed function
stabtest( ["model"=m] ); Performs a stability test for model m. This function

is available only for models that contain autoregres-
sive terms (ARIMA and VAR, although not yet im-
plemented for the VAR model). It works by treating
the dynamic model as a difference equation and calcu-
lating the proportion of draws from the posterior for
which the root of the characteristic polynomial with
the maximum modulus lies within the unit circle.
If m is not provided then the function operates on
the first model (in alphabetical order) in the current
workspace.
� m must be a model currently in memory

irf( ["horizon"=h]

[, "orthogonal"=true|false]

[, "scaled"=true|false]

[, "model"=m]

);

Calculates and plots h period impluse responses to
a shock in the variables in model m. This function is
available only for the VAR model. All four arguments
are optional and, therefore, the order in which they
are provided does not matter.
If m is not provided then the function operates on
the first model (in alphabetical order) in the current
workspace.
� h must be a positive integer. The default value for

h is 10.
� "orthogonal" must be set to either true or false, in-
dicating whether a shock on the orthogonalized or
raw errors should be considered, respectively. The
default value for "orthogonal" is true, in which case
the shocks are orthogonalized using the Cholesky
decomposition of the variance matrix, prior to cal-
culating responses.

� "scaled" must be set to either true or false, indicat-
ing whether a shock of size equal to the standard
deviation of the error or to a unit of the respective
variable should be considered, respectively. The de-
fault value for "scaled" is true, in which case the
shock is equal to the one standard deviation of the
error.

� m must be a model currently in memory

B.15 Statements for working with strings

Strings in BayES are used, primarily, to print messages on the BayES console and in directory
statements. To improve the speed of evaluation of mathematical statements, which are much
more frequently used, string operations and functions form a distinct part of the BayES lan-
guage. This means that indexing operations or functions that work on matrices do not work
on strings. However, specialized functions that operate on strings are provided and these are
documented in the following table.

Note that, as with the rest of the language, strings are case sensitive: "my string" is not the
same as "My String".
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Syntax Arguments and performed function
x = strlength(s); x is a 1×1 matrix that stores the number of char-

acters in string s. Note that escape characters are
treated as separate entries. For example, the string
"\"my string\"" contains 13 characters, with each "\""

occupying two places in the string.
� s must be a string

s = strcat(s1, s2 [, s3, s4,...]); s is a string that is constructed by concatenating the
strings that are passed as arguments to strcat().
� s1, s2, s3, s4, . . . must all be strings

s = substr(r, l:u); s is a string that is constructed by extrancting the
characters in r located from position l to u (margins
included). Note that escape characters in s occupy
two places in a string.
� r must be a string
� u and l must be positive integers with l ≤ u

strreplace(s, r, t);

strreplace(s, r, l:u);

The strreplace() function in the first form replaces
all occurrences in string s of the characters in string
r with the characters in string t. For example, the
statement strreplace(s, "\\", "/"); replaces all back-
slashes in s with forward slashes.
In the second form the function replaces the charac-
ters in string s from position l to u (margins included)
with the characters in string r.
� s, r and t must all be strings
� u and l must be positive integers with l ≤ u

x = strfind(s, r); x is a 1×1 matrix that stores the location in string s at
which the first match occurs between the characters
in s and r. For example, if s is "Hello World" and r is
"World", then x will be equal to seven.
strfind() returns 0 if s does not contain r.

� s must be a string
� r must be a string

x = strfindr(s, r); x is a 1×1 matrix that stores the location in string s at
which the last match occurs between the characters
in s and r. For example, if s is "Hello World" and r is
"World", then x will be equal to seven.
strfind() returns 0 if s does not contain r.

� s must be a string
� r must be a string

strcmp(s, r) The strcmp() function compares strings s and r and
evaluates to true if the two strings match exactly and
false otherwise.
Note that the code provided in the left is not a com-
plete statement. strcmp(s, r) would typically be the
condition in an if-else or a while statement.
� s must be a string
� r must be a string

table continues on next page
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Syntax Arguments and performed function
s = mat2str(A [, p]); The mat2str() function produces a string s from the

contents of a 1×1 matrix A, using up to p digits. If
p is not provided then s will contain the value of A

as it appears on the BayES console after a print(A);

statement.
� A must be a 1× 1 matrix
� p must be a positive integer

B.16 Plotting

BayES can produce five types of plots:

1. histograms

2. scatter plots (y versus x)

3. correlograms (acf plots)

4. line plots (y versus x or the values of y versus their row index)

5. kernel density estimates

There are five basic plotting functions in BayES, each one of which corresponds to a plot type:
hist(), scatter(), acf(), plot(), and kden(). These functions are documented in the following
table and, in their simple use, they draw their respective plots on a new figure window that
they initiate. For example, execution of a statement of the form:

plot( y, x );

will create a new figure window and plot the values contained in vector y versus the values
contained in vector x. All five basic plot functions return the title of the figure window on
which they are plotting. If, for example, the following statement is executed, while no figure
windows are currently open:

figureTitle = plot( y, x );

apart from creating a new figure window and displaying the plot, BayES will create a new string
item in the current workspace, with id value figureTitle and content "Figure 1".

The five basic plotting functions differ in the number of numerical arguments they take,
but all of them have the following optional arguments:

� "title" � "xlabel" � "ylabel" � "grid" � "colors"

These arguments, if provided, must be given after the numerical arguments of the plotting
function, separated by commas and in any order. For example, the statement:

scatter (y, x, "title "="my title ", "xlabel "="my x-axis label ", "grid"="on");

produces a scatter plot of the values contained in vector y versus the values in vector x and
sets the plot’s title and x-axis label. Finally, it requests a grid to be drawn on the figure. The
statement is equivalent to:

scatter (y, x, "xlabel "="my x-axis label", "grid"="on", "title "="my title ");

"title", "xlabel" and "ylabel" must be followed by the assignment operator, ‘=’, and a string
that specifies the corresponding option. "grid" must be followed by the assignment operator
and either the string "on" or the string "off".

The "colors" option specifies the colors to be used in the graph. Its value must be a matrix
with three columns and all elements between zeros and one. Each row of this matrix specifies
a color in RGB (red-green-blue) format, with the first row specifying the background color, the
second the color of the axes and the text labels and the remaining rows specifying the colors
used for plotting the data. For example, the statement:
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scatter (y, x, "colors "=[0,0,0; 1,0,0; 0.5 ,0 ,0.5]);

plots a scatter plot of the values in y versus the values in x and sets the graph’s background
color to black (0, 0, 0), the color of the axes and labels to red (1, 0, 0) and the color of the
markers used to represent the data to magenta (0.5, 0, 0.5).

For the remainder of this section the five optional arguments described above will be rep-
resented by <plot options>.

Multiple plots per figure window can be drawn by combining the five plotting functions
with the multiplot() and subplot() functions. For example, the statement:

figureTitle = multiplot ( 2, 3 );

will initialize and display a figure window that can plot 6 plots, across 2 rows. At this stage,
this window will be empty and need to be populated by actual plots. Submitting the statement:

plot( subplot (figureTitle , 2, 1), y, x ) ;

after a call to multiplot() will plot the values in y versus the values in x in row 2, column
1 of the figure window whose title bar displays the same string as the value of figureTitle.
Similar calls to other plotting functions can be used to populate the remaining spaces of the
multiple-plot figure window. Notice that the subplot() function must be provided as the first
argument of a plotting function. If the call to plot() in the previous statement did not include
a call to subplot(), the plot would be created in a new figure window, even after an empty
multiple-plot window has been initialized. Thus, the call to subplot() is optional and, for the
remainder of this section, any possible complete call to this function will be denoted by <subplot

options>. Note that subplots within graphs must have the same background color. The overall
background color in graphs that contain multiple subplots is the background color specified
for the subplot located at the upper left corner of the graph.

The close() function can be used to close a figure window programmatically. For example
the statement:

close ("Figure 1");

will close the figure window with “Figure 1” displayed in its title bar, while the statement:

close (all );

will close all currently open figure windows. The contents of figure windows can be exported
using the export() function, which is documented in section B.4.

BayES limits the maximum number of figure windows that can be open at any given time.
If a new figure window is requested when this maximum number has been reached then BayES

produces an error. The function maxfigures() can be used to change the maximum number of
figure windows using a statement like:

maxfigures( <positive integer> );

Finally, plotdraws() is a utility function that can be used to create a multiple-plot figure
window and plot four types of plots of the draws from the posterior distribution of a parameter
from a model in the current workspace. Because this function works on the results of models
only, it is documented in section B.14.
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Syntax Arguments and performed function
[W =] acf( [<subplot options>,]

y [, lags, <plot options>] );

Plots a correlogram for the values in vector y. lags

sets the maximum lags for which the correlation co-
efficients are calculated and plotted. If lags is not
provided then its value is set equal to 30.
If a left-hand-side id value, W, is provided then the title
of the figure window on which the function is plotting
is stored in W.
� y must be a column vector
� lags must be a positive integer
� the use of <plot options> is described at the begin-
ning of this section

� the use of <subplot options> is described at the be-
ginning of this section

� if acf() is called without a call to subplot(), a new
figure window is created; otherwise, the plot is
drawn on an existing multiple-plot figure and at
the location specified by <subplot options>

[W =] hist( [<subplot options>,]

y [, bins, <plot options>]);

Plots a histogram of the values in vector y. bins is the
number of bins to be used for the histogram. If bins

is not provided then its optimal value is calculated
internally.
If a left-hand-side id value, W, is provided then the title
of the figure window on which the function is plotting
is stored in W.
� y must be a column vector
� bins must be a positive integer
� the use of <plot options> is described at the begin-
ning of this section

� the use of <subplot options> is described at the be-
ginning of this section

� if hist() is called without a call to subplot(), a
new figure window is created; otherwise, the plot
is drawn on an existing multiple-plot figure and at
the location specified by <subplot options>

[W =] kden( [<subplot options>,]

y [, <plot options>]);

Plots the kernel density of the values in y. If y contains
more than one column then each column is treated as
a separate variable; the kernel density is estimated
separately and plotted using a different line color on
the same plot.
If a left-hand-side id value, W, is provided then the title
of the figure window on which the function is plotting
is stored in W.
� y must be a column vector or matrix
� the use of <plot options> is described at the begin-
ning of this section

� the use of <subplot options> is described at the be-
ginning of this section

� if kden() is called without a call to subplot(), a
new figure window is created; otherwise, the plot
is drawn on an existing multiple-plot figure and at
the location specified by <subplot options>

table continues on next page
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Syntax Arguments and performed function
[W =] plot( [<subplot options>,]

y [, x, <plot options>]);

Plots a line plot of the values in y versus either the
values in x (if provided) or the row index of each value.
If y contains more than one column then each column
is plotted as a different variable versus x or the row
index and using a different line color for each variable.
If a left-hand-side id value, W, is provided then the title
of the figure window on which the function is plotting
is stored in W.
� y must be a column vector or matrix
� x must be a column vector with rows equal to the
rows of y

� the use of <plot options> is described at the begin-
ning of this section

� the use of <subplot options> is described at the be-
ginning of this section

� if plot() is called without a call to subplot(), a
new figure window is created; otherwise, the plot
is drawn on an existing multiple-plot figure and at
the location specified by <subplot options>

[W =] scatter( [<subplot options>,]

y, x [, <plot options>]);

Plots a scatter plot of the values in y versus the val-
ues in x. If y contains more than one column then
each column is plotted as a different variable versus
the values in x and using a different color and mark
symbol for each variable.
If a left-hand-side id value, W, is provided then the title
of the figure window on which the function is plotting
is stored in W.
� y must be a column vector or matrix
� x must be a column vector with rows equal to the
rows of y

� the use of <plot options> is described at the begin-
ning of this section

� the use of <subplot options> is described at the be-
ginning of this section

� if scatter() is called without a call to subplot(), a
new figure window is created; otherwise, the plot
is drawn on an existing multiple-plot figure and at
the location specified by <subplot options>

[W =] multiplot(i, j) Initializes a figure window on which multiple plots can
be drawn and sets its dimensions: i is the number
of plots that can be drawn per column and j is the
number of plots that can be drawn per row. That is,
the window can be thought of as an area consisting
of i rows and j columns, with each cell being able to
accommodate a individual plot.
If a left-hand-side id value, W, is provided then the
title of the figure window which is initialized by the
function is stored in W.
� i must be a positive integer
� j must be a positive integer
see also subplot

table continues on next page
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Syntax Arguments and performed function
subplot(s, i, j) This function does not form a complete statement on

its one and it can only be used as the first argument
to the five basic plotting functions: hist(), scatter(),
acf(), plot(), and kden(). When these plotting func-
tions contain a call to subplot(), instead of plotting
the respective plot on a new figure window, they plot
it on the window whose title bar displays the string in
s. i specifies the row of the figure window on which
the plot is displayed and j the column of this window.
� s must be a string with contents equal to the string
displayed on the title bar of an open figure window

� i must be a positive integer, not greater than the
number of rows of the figure window

� j must be a positive integer, not greater than the
number of columns of the figure window

see also multiplot

B.17 system, run, pause and eval statements

The statements documented in this section are used to provide access to the machine’s op-
erating system’s command shell, control program flow or pause execution. Although these
statements have very little in common, all of them are likely to be used only by advanced users
and, therefore, they are presented together in the following table.

Syntax Arguments and performed function
system(s); This function submits the contents of string s for exe-

cution to the machine’s command line shell and waits
for it to return. Any output from the system’s com-
mand line shell is directed to the BayES console.
Under Microsoft® Windows® the string "cmd /Q /C "

is prepended to s. See section 3.9 for more details.
� s must be a string with value equal to a complete
statement in the machine’s command-line language

run(s); Executes the statements contained in the script file,
the location and name of which are provided by string
s. Once a run statement is encountered, a new
workspace is created and program flow jumps to the
first statement in the file. That is, statements con-
tained in the script file do not have access to the items
in the calling workspace and any items created during
execution of these statements are deleted from mem-
ory once execution of the last statement in the script
file completes.
� s must be a string
� s could be absolute (eg. "C:/Files/MyScript.bsf")
or relative to the current working directory (eg.
"./MyScript.bsf")

see also eval

table continues on next page
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Syntax Arguments and performed function
eval(s); Executes the statement contained in string s. During

execution of the statement in s the BayES parser has
access to the items in the calling workspace and any
items created by executing s are stored in the calling
workspace. s could contain multiple statements.
� s must be a string
� s must consist of complete BayES statement(s)
see also run

pause(i); Pauses execution of the current script for i millisec-
onds. If i is non-positive then this function has no
effect.
� i must be an integer
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